送给大家一句话:
一个犹豫不决的灵魂,奋起抗击无穷的忧患,而内心又矛盾重重,真实生活就是如此。 – 詹姆斯・乔伊斯 《尤利西斯》
_φ(* ̄ω ̄)ノ_φ(* ̄ω ̄)ノ_φ(* ̄ω ̄)ノ
_φ(* ̄ω ̄)ノ_φ(* ̄ω ̄)ノ_φ(* ̄ω ̄)ノ
_φ(* ̄ω ̄)ノ_φ(* ̄ω ̄)ノ_φ(* ̄ω ̄)ノ
从零开始认识多态
1 前言
面向对象技术(oop)的核心思想就是封装,继承和多态。通过之前的学习,我们了解了什么是封装,什么是继承。
封装就是对将一些属性装载到一个类对象中,不受外界的影响,比如:洗衣机就是对洗衣服功能,甩干功能,漂洗功能等的封装,其功能不会受到外界的微波炉影响。
继承就是可以将类对象进行继承,派生类会继承基类的功能与属性,类似父与子的关系。比如水果和苹果,苹果就有水果的特性。
接下来我们就来了解学习多态!
2 什么是多态
多态是面向对象技术(OOP)的核心思想,我们把具有继承关系的多个类型称为多态类型,通俗来讲:就是多种形态,具体点就是去完成某个行为,当不同的对象去完成时会产生出不同的状态。
举个例子:就拿刚刚结束的五一假期买票热为例,买票这个行为,当普通人买票时,是全价买票;学生买票时,是半价买票;军人买票时是优先买票。同样一个行为在不同的对象上就有不同的显现。
多态是在不同继承关系的类对象,去调用同一函数,产生了不同的行为。
#include<iostream> using namespace std; class Person { public: virtual void BuyTicket() { cout << "买票->全价" << endl; } }; class Student : public Person { public: virtual void BuyTicket() { cout << "买票->半价" << endl; } }; void Func(Person& p) { p.BuyTicket(); } int main() { Person p; Student s; //同一个函数对不同对象有不同效果 Func(p); Func(s); return 0; }
比如Student继承了Person。Person对象买票全价,Student对象买票半价。我们运行看看:
- 多态调用:运行时,到指定对象的虚表中找虚函数来调用(指向基类调用基类的虚函数,指向子类调用子类的虚函数)
- 普通调用:编译时,调用对象是哪个类型,就调用它的函数。
乍一看还挺复杂,接下来我们就来了解多态的构成。
3 多态的构成
继承的情况下才有虚函数,才有多态!!!
多态构成的条件:
- 必须通过基类的指针或者引用调用虚函数(virtual修饰的类成员函数)
- 被调用的函数必须是虚函数,且派生类必须对基类的虚函数进行重写(父子虚函数要求三同)
虚函数的重写(覆盖):派生类中有一个跟基类完全相同的虚函数(即派生类虚函数与基类虚函数的返回值类型、函数名字、参数列表完全相同),称子类的虚函数重写了基类的虚函数
看起来很是简单,当时其实有很多的坑!!!一不小心就会掉进去。
3.1 协变
上面我们说了多态的条件:父子虚函数要求三同。但是却有这样一个特殊情况:协变!
协变:派生类重写基类虚函数时,与基类虚函数返回值类型不同:
- 基类虚函数返回基类对象的指针或者引用
- 派生类虚函数返回派生类对象的指针或者引用
这样的情况称为协变。
#include<iostream> using namespace std; class A {}; class B : public A {}; //这里明显返回类型不同但是结构仍然正常 class Person { public: virtual A* BuyTicket() { cout << "买票->全价" << endl; return nullptr; } }; class Student : public Person { public: virtual B* BuyTicket() { cout << "买票->半价" << endl; return nullptr; } };
很明显派生类与基类的返回值不同(注意一定是:基类返回“基类”,派生类返回“派生类”):
但是结果确实正常的,依然构成多态,这样的情况就称为协变!!!
3.2 析构函数的重写
析构函数在编译阶段都会转换成:destructor()
,所以表面析构函数名字不同,但是实质上是一致的。这样就会构成多态。
来看正常情况下的析构:
#include<iostream> using namespace std; class Person { public: ~Person() { cout << "~Person()" << endl; } }; class Student : public Person { public: ~Student() { cout << "~Student()" << endl; } }; int main() { Person p; Student s; return 0; }
这样会正常的调用析构函数(子类析构会自动调用父类析构->先子后父):
再来看:
int main() { //Person p; //Student s; //基类可以指向基类 也可以指向派生类的基类部分 Person* p1 = new Person ; //通过切片来指向对应内容 Person* p2 = new Student; delete p1; delete p2; return 0; }
如果是这样呢?
这样调用的析构不对啊!Student对象没有调用自身的析构函数,而是调用Person的,为什么会出现这样的现象呢???
这样就可能会引起一个十分严重的问题:内存泄漏
#include<iostream> using namespace std; class Person { public: ~Person() { cout << "~Person()" << endl; } }; class Student : public Person { public: Student() { int* a = new int[100000000]; } ~Student() { cout << "~Student()" << endl; } }; int main() { for(int i = 0; i< 100000 ; i++) { Person* p2 = new Student; delete p2; } return 0; }
如果我们在Student中申请一个空间,而析构的时候却不能调用其析构函数俩把申请的空间free这样就导致了内存泄漏!!!
这就十分危险了!!!
而我们希望的是指向谁就调用谁的析构:指向基类调用基类析构,指向派生类调用派生类析构。
那我们怎么做到呢 ----> 当然就是多态了!!!
那我们来看看现在满不满足多态的条件:
- 必须通过基类的指针或者引用调用虚函数(virtual修饰的类成员函数)
- 被调用的函数必须是虚函数,且派生类必须对基类的虚函数进行重写(父子虚函数要求三同)
在编译的时候,析构函数都会变成destructor
,这样满足三同!构成重写
那么我们就只需要将析构函数变为虚函数就可以了:
class Person { public: virtual ~Person() { cout << "~Person()" << endl; } }; class Student : public Person { public: virtual ~Student() { cout << "~Student()" << endl; } };
来运行看看:
老铁 OK了!!!应该释放的空间全都释放了!!!
所以建议析构函数设置为虚函数,避免出现上述的情况。
3.3 语法细节
- 派生类(基类必须写)的对应函数可以不写
virtual
(这个语法点非常奇怪!建议写上virtual
) - “重写”的本质是重新写函数的实现,函数声明(包括缺省参数的值)与基类一致
来看一道面试题:
以下程序输出结果是什么()
#include<iostream> using namespace std; class A { public: virtual void func(int val = 1) { std::cout << "A->" << val << std::endl; } virtual void test() { func(); } }; class B : public A { public: void func(int val = 0) { std::cout << "B->" << val << std::endl; } }; int main(int argc, char* argv[]) { B* p = new B; p->test(); return 0; }
A: A->0 B: B->1 C: A->1 D: B->0 E: 编译出错 F: 以上都不正确
答案是:B
为什么呢?
- 首先:
- A类与B类构成继承关系
- func函数是虚函数(B类是派生类,可以不写virtual),并且AB 中满足三同。构成多态。
- test函数的参数是基类指针(
A* this
成员函数的默认参数),满足多态条件
2.然后:
- 主函数中调用test函数,因为B是子类,没有test函数,所以会在父类A中寻找。
- test函数调用 func函数,参数this指向的是B类(指向谁调用谁),所以就会调用B类的func函数
B->
- 重写的本质是对函数的实现进行重写,函数的结构部分(包括参数,缺省值,函数名,返回值等)与基类一致。所以是
1
所以就可以判断是B选项。
当然实际中不能这么写代码奥!!!会有生命危险(Doge)
3.4 C++11 override 和 final
从上面可以看出,C++对函数重写的要求比较严格,但是有些情况下由于疏忽,可能会导致函数名字母次序写反而无法构成重载,而这种错误在编译期间是不会报出的,只有在程序运行时没有得到预期结果才来debug会得不偿失,因此:C++11提供了override和final两个关键字,可以帮助用户检测是否重写。
- final:
- 修饰类(最终类),表示该类不能被继承。(C++98直接粗暴使用private来做到不能继承)
class car final { };
- 修饰虚函数,表示该虚函数不能再被继承。
virtual void func() final { }
- override: 检查派生类虚函数是否重写了基类某个虚函数,如果没有重写编译报错。
class Car { public: virtual void Drive() {} }; class Benz :public Car { public: virtual void Drive() override { cout << "Benz-舒适" << endl; } };
3.5 重写(覆盖) - 重载 - 重定义(隐藏)
我们来区分一下这三个类似的概念:
1.重载 :
- 两个函数作用在同一作用域
- 函数名相同,参数不同
2.重写(覆盖):
- 两个函数分别在基类作用域好派生类作用域
- 函数名、参数、返回值都一样(协变例外)
- 两个函数必须是虚函数!
3.重定义:
- 两个函数分别在基类作用域好派生类作用域
- 仅仅函数名相同
- 两个基类和派生类的同名函数不是重写就是重定义
重定义包含重写!!!