市场模式下光伏用户群的电能共享与需求响应模型(matlab代码)

简介: 市场模式下光伏用户群的电能共享与需求响应模型(matlab代码)

1 主要内容

该程序复现文章《市场模式下光伏用户群的电能共享与需求响应模型》,为了使光伏用户群内各经济主体能实现有序的电能交易,提出了一种基于光伏电能供需比(SDR)的内部价格模型。在考虑经济性和舒适度的基础上,提出了用户参与需求响应(DR)的效用成本模型。由于内部电价是以各时段光伏用户群内的供需比为基础,用户之间针对电价的需求响应行为可构成非合作博弈,在证明该博弈问题存在纳什均衡解的基础上,提出了分布式优化算法对用户的纳什均衡策略进行求解。最后,通过实际算例验证了所提模型在减少用电成本、提高光功率互用水平上的有效性。程序采用matlab编制,该程序注释较少,适合于有编程经验的同学进一步学习提升!

  • 光伏用户群结构

对于分布式光伏用户,首选光功率自消纳,光功率过剩时由服务商按内部购电电价收购,光伏功率不足时从服务商按内部售电电价购电。对于邻近的分布式光伏用户,其光照和温度等外部环境相同,导致光功率输出特性大致相同,但是由于不同用户间 的负荷特性普遍存在差异,因此净功率的差异为光 功率互用提供了基础条件。
  • 电能共享价格模型

  • 程序过程

2 部分代码

clear ;
clc;
load RU2;
RU2 = RU2(:,[1 3 4 2 5]);
s1 = [0;0;0;0;0;0;0.04;1.276;3.66;4.72;5.52;5.6;5.4;5.28;5.16;4.48;3.48;1.24;0.04;0;0;0;0;0];
s2 = [0;0;0;0;0;0;0;0;0.17;0.69;1.38;3.11;4.67;5.01;5.01;4.84;5.36;4.67;2.07;0.69;0.17;0;0;0];
s3 = [0;0;0;0;0;0;0;0;0.105;2.385;3.681;4.716;5.91;5.7;5.55;5.07;4.05;1.92;0.21;0;0;0;0;0];
s4 = [0;0;0;0;0;0;0;0;1.01;2.53;3.7;4.55;5.06;5.08;4.65;3.79;2.6;0.55;0.05;0;0;0;0;0];
s5 = [0;0;0;0;0;0;0.018;0.97;2.255;3.465;4.552;5.29;5.57;5.45;5.225;4.33;3.06;1.75;0.378;0;0;0;0;0];
% psell = [0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.8 0.8 0.8 1.3 1.3 1.3 1.3 0.8 0.8 0.8 0.8 1.3 1.3 1.3 0.8 0.8];
% load solar;
% solar = solar';
solar = [40*s1,20*s2,40*s3,30*s4,60*s5];
solar = solar(:,[1 3 4 2 5]);
% RU2 = RU2/1000;
% solar = solar/1000;
%solar = solar*5;
% global p;% k ;
Load = RU2 - solar;%[RU2(:,1)-40*s1,RU2(:,2)-20*s2,RU2(:,3)-40*s3,RU2(:,4)-30*s4,RU2(:,5)-60*s5];%设置光伏装配数量
% p = p*1000;
t_start = tic;
MAX_ITER = 40;
ABSTOL = 0.01;
RELTOL = 1e-3;
N = 5;%
x = zeros(24,N);
% k = 1; 
u = zeros(24,N);
rs = zeros(2,MAX_ITER);
totfeerecord = zeros(1,MAX_ITER);
pSrecord = zeros(24,MAX_ITER);
pBrecord = zeros(24,MAX_ITER);
x1record = zeros(24,MAX_ITER);
x2record = zeros(24,MAX_ITER);
x3record = zeros(24,MAX_ITER);
x4record = zeros(24,MAX_ITER);
x5record = zeros(24,MAX_ITER);
    x1record(:,1) = RU2(:,1);
    x2record(:,1) = RU2(:,2);
    x3record(:,1) = RU2(:,3);
    x4record(:,1) = RU2(:,4);
    x5record(:,1) = RU2(:,5);
    pSrecord(:,1) = 0.4*ones(24,1);
    pBrecord(:,1) = ones(24,1);
x1L = zeros(24,MAX_ITER);
x2L = zeros(24,MAX_ITER);
x3L = zeros(24,MAX_ITER);
x4L= zeros(24,MAX_ITER);
x5L = zeros(24,MAX_ITER);
% exitfalgrecord = zeros(N,96);
p = getPrice(Load);%集群买卖电价
pacture = p;
for i=2:MAX_ITER
    pSrecord(:,i) = p(:,1);
    pBrecord(:,i) = p(:,2);
    [x,exitflag] = update_x(x,RU2,solar,p);
    %Load = [x(:,1)-25*s1,x(:,2)-30*s2,x(:,3)-10*s3];%设置光伏装配数量


3 程序结果

部分原文结果


相关文章
|
16天前
|
机器学习/深度学习 算法 数据安全/隐私保护
数据链中常见电磁干扰matlab仿真,对比噪声调频,线性调频,噪声,扫频,灵巧五种干扰模型
本项目展示了用于分析和模拟电磁干扰对数据链系统影响的算法。通过Matlab 2022a运行,提供无水印效果图预览。完整代码包含详细中文注释及操作视频。理论部分涵盖五种常见干扰模型:噪声调频、线性调频、噪声、扫频和灵巧干扰,详细介绍其原理并进行对比分析。灵巧干扰采用智能技术如认知无线电和机器学习,自适应调整干扰策略以优化效果。
|
24天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
102 13
|
1月前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
2月前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
253 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
149 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
120 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
8月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)