考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化

简介: 考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化

1 主要内容

“双碳”背景下,为提高能源利用率,优化设备的运行灵活性,进一步降低综合能源系统(IES)的碳排放水平,提出一种IES低碳经济运行策略。首先考虑IES参与到碳交易市场,引入阶梯式碳交易机制引导IES控制碳排放;接着细化电转气(P2G)的两阶段运行过程,引入电解槽、甲烷反应器、氢燃料电池(HFC)替换传统的P2G,研究氢能的多方面效益;最后提出热电比可调的热电联产、HFC运行策略,进一步提高IES的低碳性与经济性。基于此,构建以购能成本、碳排放成本、弃风成本最小的低碳经济运行目标,将原问题转化为混合整数线性问题,运用CPLEX商业求解器进行求解,通过设置多个运行情景,对比验证了所提策略的有效性。

2 部分程序

clc
clear
close all
%% 决策变量初始化
P_CHP_e=sdpvar(1,24); %CHP的输出电功率
P_CHP_h=sdpvar(1,24); %CHP的输出热功率
P_g_CHP=sdpvar(1,24); %CHP消耗天然气功率
P_e_EL=sdpvar(1,24);  %EL设备的耗电量
P_EL_H=sdpvar(1,24);  %EL电解槽的产氢功率
P_H_MR=sdpvar(1,24);  %输入MR设备的氢能功率
P_MR_g=sdpvar(1,24);  %MR设备输出的天然气功率
P_H_HFC=sdpvar(1,24); %输入HFC设备的氢能功率
P_HFC_e=sdpvar(1,24); %HFC设备输出的电功率 
P_HFC_h=sdpvar(1,24); %HFC设备输出的热功率
P_DG=sdpvar(1,24); %风电消纳功率
P_g_GB=sdpvar(1,24); %输入GB设备的天然气功率
P_GB_h=sdpvar(1,24); %GB设备输出的热功率
%储能部分(电ES1、热ES2、气ES3、氢ES4)
P_ES1_cha=sdpvar(1,24);P_ES2_cha=sdpvar(1,24);P_ES3_cha=sdpvar(1,24);P_ES4_cha=sdpvar(1,24); %充放功率
P_ES1_dis=sdpvar(1,24);P_ES2_dis=sdpvar(1,24);P_ES3_dis=sdpvar(1,24);P_ES4_dis=sdpvar(1,24);
S_1=sdpvar(1,24);S_2=sdpvar(1,24);S_3=sdpvar(1,24);S_4=sdpvar(1,24); %各储能的实时容量状态
%引入充放标志二进制变量
B_ES1_cha=binvar(1,24);B_ES2_cha=binvar(1,24);B_ES3_cha=binvar(1,24);B_ES4_cha=binvar(1,24); %充标志
B_ES1_dis=binvar(1,24);B_ES2_dis=binvar(1,24);B_ES3_dis=binvar(1,24);B_ES4_dis=binvar(1,24); %放标志
P_e_buy=sdpvar(1,24); %购电功率
P_g_buy=sdpvar(1,24); %购气功率
ww=275*rand(1,24);
%% 导入常数参数
%电负荷
P_e_load=1.1*[717.451523545706;695.290858725762;689.750692520776;698.060941828255;745.152354570637;808.864265927978;836.565096952909;872.576177285319;886.426592797784;900.277008310249;894.736842105263;883.656509695291;875.346260387812;864.265927977839;864.265927977839;868.421052631579;876.731301939058;889.196675900277;880.886426592798;864.265927977839;836.565096952909;817.174515235457;772.853185595568;745.152354570637]';
%热负荷
P_h_load=0.9*[864.265927977839;941.828254847645;958.448753462604;955.678670360111;988.919667590028;997.229916897507;903.047091412742;833.795013850416;786.703601108033;703.601108033241;664.819944598338;626.038781163435;595.567867036011;590.027700831025;565.096952908587;639.889196675900;714.681440443213;806.094182825485;811.634349030471;831.024930747922;811.634349030471;808.864265927978;800.554016620499;808.864265927978]';
%天然气负荷
P_g_load=[229.916897506925;224.376731301939;216.066481994460;221.606648199446;224.376731301939;252.077562326870;268.698060941828;288.088642659280;299.168975069252;288.088642659280;293.628808864266;282.548476454294;279.778393351801;271.468144044321;271.468144044321;268.698060941828;277.008310249307;293.628808864266;307.479224376731;304.709141274238;293.628808864266;285.318559556787;277.008310249307;265.927977839335]';
%风电预测出力
P_DG_max=1.2*[850.415512465374;864.265927977839;886.426592797784;891.966759002770;894.736842105263;849.030470914127;833.795013850416;653.739612188366;556.786703601108;501.385041551247;432.132963988920;310.249307479224;240.997229916897;252.077562326870;265.927977839335;296.398891966759;343.490304709141;354.570637119114;426.592797783934;526.315789473684;675.900277008310;742.382271468144;854.570637119114;878.116343490305]'+ww;
%购电价格
c_e_buy=1.2*[0.38*ones(1,7),0.68*ones(1,4),1.2*ones(1,3),0.68*ones(1,4),1.2*ones(1,4),0.38*ones(1,2)];
%购气价格
c_g_buy=0.45*ones(1,24);
%% 导入约束条件
C=[];
C=[C,
   P_CHP_e==0.92*P_g_CHP, %CHP的电-气能量转换约束
   0<=P_g_CHP<=600, %CHP消耗的气功率上下限约束
   0.5*P_CHP_e<=P_CHP_h, %热电比上下限
   P_CHP_h<=2.1*P_CHP_e, %热电比上下限
   -0.2*600<=P_g_CHP(2:24)-P_g_CHP(1:23)<=0.2*600, %CHP的爬坡约束(1-24时段)
  ];
C=[C,
   P_EL_H==0.88*P_e_EL, %EL(电解槽)的氢-电能量转换约束
   0<=P_e_EL<=500, %EL的消耗电功率的上下限约束
   -0.2*500<=P_e_EL(2:24)-P_e_EL(1:23)<=0.2*500, %EL的爬坡约束(1-24时段)
  ];

3 程序结果


相关文章
|
5月前
|
调度
【综合能源】计及碳捕集电厂低碳特性及需求响应的综合能源系统多时间尺度调度模型
此程序是基于《计及碳捕集电厂低碳特性的含风电电力系统源-荷多时间尺度调度方法》的复现,实现了电热综合能源系统的日前日内调度模型,涉及燃气轮机、风电机组、火电机组、电锅炉及碳捕集系统。程序使用MATLAB的YALMIP+CPLEX进行优化,考虑了碳捕集、风电协调、需求响应和系统灵活性。它定义了多种决策变量,包括电力和热力出力、碳排放、能耗等,并设置了相应的约束条件,如出力范围、碳捕集效率和旋转备用约束。程序还显示了实现效果的图表,但具体细节未给出。
|
7月前
|
运维
碳交易机制下考虑需求响应的综合能源系统优化运行(matlab代码)
碳交易机制下考虑需求响应的综合能源系统优化运行(matlab代码)
|
调度
考虑碳交易机制的园区综合能源系统电热协同运行优化研究(Matlab代码实现)
考虑碳交易机制的园区综合能源系统电热协同运行优化研究(Matlab代码实现)
136 0
|
Java 调度
计及绿证交易及碳排放的含智能楼宇微网优化调度(Matlab代码实现)
计及绿证交易及碳排放的含智能楼宇微网优化调度(Matlab代码实现)
|
存储 机器学习/深度学习 人工智能
考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化(Matlab代码实现)
考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化(Matlab代码实现)
185 0
|
供应链 调度
考虑阶梯式碳交易与供需灵活双响应的综合能源系统优化调度(Matlab代码实现)
考虑阶梯式碳交易与供需灵活双响应的综合能源系统优化调度(Matlab代码实现)
114 0
|
存储 调度
考虑柔性负荷的综合能源系统低碳经济优化调度【考虑碳交易机制】(Matlab代码实现)
考虑柔性负荷的综合能源系统低碳经济优化调度【考虑碳交易机制】(Matlab代码实现)
168 0
|
调度
【电力系统综合能源】“双碳“背景下|综合能源系统中的经济-二氧化碳排放协调最优调度和敏感性分析研究(Matlab代码实现)
【电力系统综合能源】“双碳“背景下|综合能源系统中的经济-二氧化碳排放协调最优调度和敏感性分析研究(Matlab代码实现)
152 0
|
运维
碳交易机制下考虑需求响应的综合能源系统优化运行(Matlab代码实现)
碳交易机制下考虑需求响应的综合能源系统优化运行(Matlab代码实现)
105 0
|
存储 调度
综合能源系统中基于电转气和碳捕集系统的热电联产建模与优化研究(Matlab代码实现)
综合能源系统中基于电转气和碳捕集系统的热电联产建模与优化研究(Matlab代码实现)
134 0