【MPC|云储能】基于模型预测控制(MPC)的微电网调度优化的研究(matlab代码)

简介: 【MPC|云储能】基于模型预测控制(MPC)的微电网调度优化的研究(matlab代码)

1 主要内容

该程序分为两部分,日前优化部分——该程序首先根据《电力系统云储能研究框架与基础模型》上面方法,根据每个居民的实际需要得到响应储能充放电功率,优化得到整体的储能充放电功率情况。日内滚动mpc跟踪部分——采用《基于MPC的微电网并网优化调度》P31-36页相关内容,通过预测模型、滚动优化、反馈校正得到soc跟踪情况。


2 程序难点及问题说明

  • 代码修正
for i=1:96    
    C=[C;
       P_C1(i) == P_G1(i)+P_PV1(i);%储能功率=电网供电+光伏储能
       P_PV1(i)<=P_C1(i)<=P_cap;%储能值约束
       0<=P_G1(i)<=P_cap;%电网供电约束
       E1(1)+sum(P_C1)*nc*t==E_cap;%soc约束,到储能结束soc=1
      ];
end


该程序含有这段代码,最后一句代码和i不相关,却重复循环96次,这句代码和下面的代码功能重复,在学习和修改代码的时候增加了复杂度。此外,还有几处类似问题已经修正。

原文献有储能充放电功率模型如下,该部分约束能够保证充放电功率不能同时不为0,但是在代码里面却存在这方面问题,已经进行了修正。

  • 部分问题

代码原来的出图效果如下:

该部分是第一阶段优化结果,对于云储能用户,考虑最简单的调度策略,即根据电价详细分清楚每个时间段的充放电状态,所以soc曲线也较为规律(该图应该为5段,即充-放-充-放-充,但是考虑到前四段已经能够说明问题,就只分析前四段)。

得到两个阶段的soc跟踪效果图,但是为什么只是充电阶段的跟踪图呢?为什么第一个图效果那么好呢?第一个问题留给大家思考,第二个问题一会揭晓。

  • 修正后的代码运行结果

修正代码实现了全过程的soc跟踪控制。

本模型的跟踪控制主要是由于光伏波动引起的,在不存在光伏波动的时间段就会出现soc完美的跟踪效果,也就回答了上面第二个问题。

3 部分程序

clc;clear all;
%% 数据准备
data = xlsread('预测数据.xlsx');
p_pv = data;%正值代表负荷。负值代表用户光伏发电量高于负荷的部分
p_pv(data<0) = 0;    %用户的剩余光伏数据
prepv=sum(p_pv,2);
data_d = data;
data_d(data>0) = 0;   %用户放电负荷数据
data_d = -1.*data_d;
preload=sum(data_d,2);
%% 参数设置
e_cap = xlsread('各用户租赁容量.xlsx');  %各用户租赁的能量容量
p_cap = 0.5.*e_cap;                                %各用户租赁的功率容量
E_cap = 175;                                       %CES储能容量
P_cap = 90;                                        %CES功率容量
e0 = 0.2.*e_cap;                                   %各用户初始电量
E0 = 0.2*E_cap;                                    %CES初始电量
emin = 0.1.*e_cap; 
Emin = 0.1*E_cap;
nc = 0.96;  %充电效率
nd = 0.96;  %放电效率
r1 = 0.32;   %低谷电价
r2 = 0.66;   %平谷电价
r3 = 1.1;    %高峰电价
r = zeros(288,1);  %各时段电价
r(1:96) = r1;
r(97:144) = r3;
r(145:204) = r2;
r(205:252) = r3;
r(253:288) = r2;
t = 5/60;  %时间间隔
%% 定义变量
E1 = sdpvar(96,1);%储能容量变量
E1(1) = E0;
P_PV1 = sum(p_pv(1:96,:),2);%充电时段0-8:00整体光伏出力
P_C1 = sdpvar(96,1);%储能出力变量
P_G1 = sdpvar(96,1);%电网供电变量
C=[];%初始化约束
for i=1:96    
    C=[C;
       P_C1(i) == P_G1(i)+P_PV1(i);%储能功率=电网供电+光伏储能
       P_PV1(i)<=P_C1(i)<=P_cap;%储能值约束
       0<=P_G1(i)<=P_cap;%电网供电约束
%        E1(1)+sum(P_C1)*nc*t==E_cap;%soc约束,到储能结束soc=1
      ];
end
相关文章
|
20天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
156 80
|
8天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
18天前
|
机器学习/深度学习 算法 数据安全/隐私保护
数据链中常见电磁干扰matlab仿真,对比噪声调频,线性调频,噪声,扫频,灵巧五种干扰模型
本项目展示了用于分析和模拟电磁干扰对数据链系统影响的算法。通过Matlab 2022a运行,提供无水印效果图预览。完整代码包含详细中文注释及操作视频。理论部分涵盖五种常见干扰模型:噪声调频、线性调频、噪声、扫频和灵巧干扰,详细介绍其原理并进行对比分析。灵巧干扰采用智能技术如认知无线电和机器学习,自适应调整干扰策略以优化效果。
|
6天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
5天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
16天前
|
算法
基于PSO粒子群优化的配电网可靠性指标matlab仿真
本程序基于PSO粒子群优化算法,对配电网的可靠性指标(SAIFI、SAIDI、CAIDI、ENS)进行MATLAB仿真优化。通过调整电网结构和设备配置,最小化停电频率和时长,提高供电连续性和稳定性。程序在MATLAB 2022A版本上运行,展示了优化前后指标的变化。PSO算法模拟鸟群行为,每个粒子代表一个潜在解决方案,通过迭代搜索全局最优解,实现配电网的高效优化设计。
|
13天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
16天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
17天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
26天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
108 13