含sop的配电网优化

简介: 含sop的配电网优化

1 主要内容

程序以IEEE33节点为例,分析含sop的配电网优化,包括sop有功约束、无功约束和容量约束,非线性部分通过转换为旋转锥约束进行编程,并且包括33节点配电网潮流及对应电压、电流约束、OLTC约束等,程序是对《Coordinated Control Method of Voltage and Reactive Power for Active Distribution Networks Based on Soft Open Point》方法实现,里面还有更深一些的知识,包括OLTC和CB等部分内容,具体sop部分和文献《考虑分布式电源运行特性的有源配电网智能软开关sop规划方法》一致。

2 部分代码

%% 定义约束条件
Constraints=[];
%% SOP有功功率限制 (1) 
Constraints=[Constraints,x_p_sop1(1,:)+x_p_sop1(2,:)+x_p_sop1_loss(1,:)+...
    x_p_sop1_loss(2,:)==0];
Constraints=[Constraints,x_p_sop2(1,:)+x_p_sop2(2,:)+...
    x_p_sop2_loss(1,:)+x_p_sop2_loss(2,:)==0];
%% CBs操作限制(27、29) 33
Constraints=[Constraints,Q_CB==N_CB*q_CB];
Constraints=[Constraints,N_CB<=5];
Constraints=[Constraints,N_CB>=0];
%% 有功功率损耗(33)
f_loss1=sum(r_ij'*x_Iij_square)*delta_T;
Constraints=[Constraints,x_ui_square(1,:)==12.66^2];  %平衡节点每小时电压平方
f_loss2=sum(x_p_sop1_loss)*delta_T;
f_loss3=sum(x_p_sop2_loss)*delta_T;
 Constraints=[Constraints,x_Iij_square>=0];    
%% sop运行约束%(40,41)
    Constraints=[Constraints,0.02*sqrt(x_p_sop1(1,:).^2+x_q_sop1(1,:).^2)<=...
        x_p_sop1_loss(1,:)];
    %Constraints=[Constraints,(x_p_sop1(2,opt_num)^2+x_q_sop1(2,opt_num)^2)<=...
     %   2*(x_p_sop1_loss(2,opt_num)/(sqrt(2)*0.02))*(x_p_sop1_loss(2,opt_num)/(sqrt(2)* 0.02))];
    Constraints=[Constraints,0.02*sqrt(x_p_sop1(2,:).^2+x_q_sop1(2,:).^2)<=...
        x_p_sop1_loss(2,:)];
%     Constraints=[Constraints,x_p_sop1(1,opt_num)+x_p_sop1(2,opt_num)==0];
     Constraints=[Constraints,0.02*sqrt(x_p_sop2(1,:).^2+x_q_sop2(1,:).^2)<=...
        x_p_sop2_loss(1,:)];
     Constraints=[Constraints,0.02*sqrt(x_p_sop2(2,:).^2+x_q_sop2(2,:).^2)<=...
        x_p_sop2_loss(2,:)];
%     Constraints=[Constraints,x_p_sop2(1,opt_num)+x_p_sop2(2,opt_num)==0];

程序代码标注了和文献公式的对应性,方便学习!

3 程序结果


相关文章
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
589 23
|
12月前
|
数据采集 存储 数据挖掘
构建电商数据采集系统初定位
构建电商数据采集系统需经历需求分析、技术选型、系统设计、开发实现、测试优化及部署维护六大步骤。过程中要明确目标与数据范围,选择合适的工具和数据库,并设计合理的架构与采集策略。还需考虑合法合规、分布式采集、数据质量控制及动态调整等策略,确保系统高效、稳定运行,适应电商环境变化。
|
11月前
|
机器学习/深度学习 存储 算法
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
近端策略优化(PPO)是深度强化学习中高效的策略优化方法,广泛应用于大语言模型的RLHF训练。PPO通过引入策略更新约束机制,平衡了更新幅度,提升了训练稳定性。其核心思想是在优势演员-评论家方法的基础上,采用裁剪和非裁剪项组成的替代目标函数,限制策略比率在[1-ϵ, 1+ϵ]区间内,防止过大的策略更新。本文详细探讨了PPO的基本原理、损失函数设计及PyTorch实现流程,提供了完整的代码示例。
4822 10
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
|
算法 新能源
配电网重构之二阶锥模型
配电网重构之二阶锥模型
|
JavaScript 前端开发 API
vue 报错【解决方案】/sockjs-node/info?t=
vue 报错【解决方案】/sockjs-node/info?t=
1886 0
|
缓存 Linux 虚拟化
Linux下top命令指标说明
Linux下top命令指标说明
1237 0
|
机器学习/深度学习 算法 关系型数据库
【PyTorch深度强化学习】DDPG算法的讲解及实战(超详细 附源码)
【PyTorch深度强化学习】DDPG算法的讲解及实战(超详细 附源码)
5551 1
|
数据可视化
【word visio绘图】关闭visio两线交叉的跳线(跨线)
【word visio绘图】关闭visio两线交叉的跳线(跨线)
1185 0
|
安全 网络安全
网络安全单兵工具 -- YAKIT
网络安全单兵工具 -- YAKIT
2997 0
|
机器学习/深度学习 算法
深度强化学习中Double DQN算法(Q-Learning+CNN)的讲解及在Asterix游戏上的实战(超详细 附源码)
深度强化学习中Double DQN算法(Q-Learning+CNN)的讲解及在Asterix游戏上的实战(超详细 附源码)
936 0