高维向量搜索:在 Elasticsearch 8.X 中利用 dense_vector 的实战探索

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 高维向量搜索:在 Elasticsearch 8.X 中利用 dense_vector 的实战探索

近年来,随着深度学习技术的发展,向量搜索引发了人们的广泛关注。早在 Elasticsearch在7.2.0 版本引入了dense_vector字段类型,支持存储高维向量数据,如词嵌入或文档嵌入,以进行相似度搜索等操作。在本文中,我将展示如何在Elasticsearch 8.X 版本中使用 dense_vector 进行向量搜索。

一、背景介绍

首先,我们需要了解一下dense_vector。dense_vector是Elasticsearch用于存储高维向量的字段类型,通常用于神经搜索,以便利用NLP和深度学习模型生成的嵌入来搜索相似文本。你可以在这个链接找到更多关于dense_vector的信息。

在接下来的部分,我将展示如何创建一个简单的Elasticsearch索引,该索引包含基于文本嵌入的向量搜索功能。

二、生成向量:利用Python处理

首先,我们需要用Python和BERT模型来生成文本嵌入。以下是我们如何做到这一点的示例:

import torch
from transformers import BertTokenizer, BertModel
 
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
model = BertModel.from_pretrained("bert-base-uncased")
 
 
def get_bert_embedding(text):
    inputs = tokenizer(text, return_tensors="pt", max_length=128, truncation=True, padding="max_length")
    with torch.no_grad():
        outputs = model(**inputs)
    return outputs.last_hidden_state[:, :3, :].numpy()
 
def print_infos():
    docs = ["占地100亩的烧烤城在淄博仅用20天即成功新建,现在已成为万人争抢“烤位”的热门去处。",
            "淄博新建的一座占地100亩的烧烤城在短短20天内建成,吸引了众多烧烤爱好者,如今“烤位”已是一位难求。",
            "在淄博,一座耗时20天新建的占地100亩的烧烤城成为众人瞩目的焦点,各种美味烧烤让万人争夺“烤位”,可谓一座难求。",
            "淄博一般指淄博市。 淄博市,简称“淄”,齐国故都,山东省辖地级市,Ⅱ型大城市"]
    for doc in docs:
        print( f"Vector for '{doc}':", get_bert_embedding( doc ) )
    
if __name__ == '__main__':
    print_infos()

在上述脚本中,我们定义了一个函数 get_bert_embedding 来生成每个文档的向量表示。然后,我们生成了四个不同的文档向量,并将其输出打印到控制台。如下图所示:

结果参考:

Vector for '占地100亩的烧烤城在淄博仅用20天即成功新建,现在已成为万人争抢“烤位”的热门去处。': [[[-0.2703271   0.38279012 -0.29274252 ... -0.24937081  0.7212287
    0.0751707 ]
  [ 0.01726123  0.1450473   0.16286954 ... -0.20245396  1.1556625
   -0.112049  ]
  [ 0.51697373 -0.01454506  0.1063835  ... -0.2986216   0.69151103
    0.13124703]]]
Vector for '淄博新建的一座占地100亩的烧烤城在短短20天内建成,吸引了众多烧烤爱好者,如今“烤位”已是一位难求。': [[[-0.22879271  0.43286988 -0.21742335 ... -0.22972387  0.75263715
    0.03716223]
  [ 0.1252176  -0.02892866  0.17054333 ... -0.30524847  0.94903445
   -0.46865308]
  [ 0.42650488  0.34019586 -0.01442122 ... -0.17345914  0.6688627
   -0.75012964]]]

三、实战探索:向Elasticsearch中导入和搜索向量

3.1 创建索引

我们首先需要在Elasticsearch中创建一个新的索引来存储我们的文档和它们的向量表示。以下是创建索引的API调用:

PUT /my_vector_index
{
  "mappings": {
    "properties": {
      "title": {
        "type": "text"
      },
      "content_vector": {
        "type": "dense_vector",
        "dims": 3
      }
    }
  }
}

在上述代码中,我们创建了一个名为 my_vector_index 的索引,并定义了两个字段:title 和 content_vector。其中,content_vector 字段的类型被设置为 dense_vector,并指定其维度为3,这与我们前面生成的BERT向量维度一致。

3.2 导入数据

接下来,我们可以将我们的文档及其相应的向量导入到索引中。以下是一个示例的批量导入API调用:

POST my_vector_index/_bulk
{"index":{"_id":1}}
{"title":"占地100亩的烧烤城在淄博仅用20天即成功新建,现在已成为万人争抢“烤位”的热门去处。","content_vector":[-0.2703271, 0.38279012, -0.29274252]}
{"index":{"_id":2}}
{"title":"淄博新建的一座占地100亩的烧烤城在短短20天内建成,吸引了众多烧烤爱好者,如今“烤位”已是一位难求。","content_vector":[-0.22879271, 0.43286988, -0.21742335]}
{"index":{"_id":3}}
{"title":"在淄博,一座耗时20天新建的占地100亩的烧烤城成为众人瞩目的焦点,各种美味烧烤让万人争夺“烤位”,可谓一座难求。","content_vector":[-0.24912262, 0.40769795, -0.26663426]}
{"index":{"_id":4}}
{"title":"淄博一般指淄博市。 淄博市,简称“淄”,齐国故都,山东省辖地级市,Ⅱ型大城市","content_vector":["0.32247472, 0.19048998, -0.36749798]}

在这个例子中,我们使用了Elasticsearch的_bulk 接口批量导入数据。每个文档的数据由两行组成:一行包含文档的ID,另一行包含文档的标题和内容向量。注意向量的值与我们在Python代码中生成的值是相同的。

3.3 执行检索

创建并导入数据后,我们可以执行一次相似性检索。我们将使用脚本评分查询,其中我们的评分脚本将计算查询向量与每个文档的内容向量之间的余弦相似度。

以下是一个API调用的例子:

GET my_vector_index/_search
{
  "query": {
    "script_score": {
      "query": {
        "match_all": {}
      },
      "script": {
        "source": "cosineSimilarity(params.query_vector, 'content_vector') + 1.0", 
        "params": {
          "query_vector": [-0.2703271, 0.38279012, -0.29274252]  
        }
      }
    }
  }
}

在上述查询中,我们定义了一个脚本评分查询script_score。该查询首先执行一个匹配所有文档的查询(match_all),然后根据我们的脚本对每个文档进行评分。

评分脚本cosineSimilarity(params.query_vector, 'content_vector') + 1.0计算查询向量和每个文档的content_vector字段之间的余弦相似度,并将结果加1(因为余弦相似度的范围是-1到1,而Elasticsearch的评分必须是非负的)。

我们拿文档1的向量作为检索条件,执行结果如下:

四、结语

基于向量的搜索方法正在不断发展,Elasticsearch也在不断改进和扩展其功能以跟上这一趋势。

为了充分利用Elasticsearch的能力,请确保关注其官方文档和更新,以便了解最新的功能和最佳实践。使用dense_vector字段和相关的搜索方法,我们可以在Elasticsearch中实现复杂的向量搜索,为用户提供更精确和个性化的搜索体验。

推荐阅读


更短时间更快习得更多干货!

和全球 近2000+ Elastic 爱好者一起精进!

大模型时代,抢先一步学习进阶干货!


相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
2月前
|
存储 自然语言处理 BI
|
21天前
|
存储 缓存 固态存储
Elasticsearch高性能搜索
【11月更文挑战第1天】
34 6
|
20天前
|
API 索引
Elasticsearch实时搜索
【11月更文挑战第2天】
30 1
|
2月前
|
人工智能
云端问道12期-构建基于Elasticsearch的企业级AI搜索应用陪跑班获奖名单公布啦!
云端问道12期-构建基于Elasticsearch的企业级AI搜索应用陪跑班获奖名单公布啦!
176 2
|
2月前
|
Web App开发 JavaScript Java
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。
这篇文章是关于如何使用Spring Boot整合Elasticsearch,并通过REST客户端操作Elasticsearch,实现一个简单的搜索前后端,以及如何爬取京东数据到Elasticsearch的案例教程。
203 0
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。
|
4月前
|
人工智能 自然语言处理 搜索推荐
阿里云Elasticsearch AI搜索实践
本文介绍了阿里云 Elasticsearch 在AI 搜索方面的技术实践与探索。
19170 21
|
3月前
|
存储 缓存 自然语言处理
深度解析ElasticSearch:构建高效搜索与分析的基石
【9月更文挑战第8天】在数据爆炸的时代,如何快速、准确地从海量数据中检索出有价值的信息成为了企业面临的重要挑战。ElasticSearch,作为一款基于Lucene的开源分布式搜索和分析引擎,凭借其强大的实时搜索、分析和扩展能力,成为了众多企业的首选。本文将深入解析ElasticSearch的核心原理、架构设计及优化实践,帮助读者全面理解这一强大的工具。
206 7
因为一个问题、我新学了一门技术 ElasticSearch 分布式搜索
这篇文章讲述了作者因为一个检索问题而学习了ElasticSearch技术,并分享了排查和解决ElasticSearch检索结果与页面展示不符的过程。
因为一个问题、我新学了一门技术 ElasticSearch 分布式搜索
|
3月前
|
JSON 监控 Java
Elasticsearch 入门:搭建高性能搜索集群
【9月更文第2天】Elasticsearch 是一个分布式的、RESTful 风格的搜索和分析引擎,基于 Apache Lucene 构建。它能够处理大量的数据,提供快速的搜索响应。本教程将指导你如何从零开始搭建一个基本的 Elasticsearch 集群,并演示如何进行简单的索引和查询操作。
230 3
|
4月前
|
存储 人工智能 安全
保障隐私的Elasticsearch AI搜索解决方案
【8月更文第28天】随着大数据和人工智能技术的发展,搜索引擎在日常生活中扮演着越来越重要的角色。然而,用户隐私保护成为了一个不容忽视的问题。本文将探讨如何在确保用户数据隐私的同时,利用Elasticsearch实现智能搜索功能。我们将介绍一种综合方案,该方案结合了加密技术、差分隐私、匿名化处理以及安全多方计算等方法,以保障用户数据的安全性
176 0