【C++入门到精通】C++入门 —— AVL 树(自平衡二叉搜索树)

简介: 【C++入门到精通】C++入门 —— AVL 树(自平衡二叉搜索树)

前言

前言

前面我们讲了C语言的基础知识,也了解了一些初阶数据结构,并且讲了有关C++的命名空间的一些知识点以及关于C++的缺省参数、函数重载,引用 和 内联函数也认识了什么是类和对象以及怎么去new一个 ‘对象’ ,也了解了C++中的模版,以及学习了几个STL的结构也相信大家都掌握的不错,接下来博主将会带领大家继续学习有关C++比较重要的知识点——  AVL 树(自平衡二叉搜索树) 。下面话不多说坐稳扶好咱们要开车了😍

一、AVL树的概念

AVL树是一种自平衡的二叉搜索树,它在插入或删除节点时通过旋转操作来保持树的平衡。AVL树的名称来自发明者 Adelson-Velsky 和 Landis 的姓氏的首字母。

在AVL树中,每个节点都有一个平衡因子(balance factor),表示其左子树高度和右子树高度之间的差值。平衡因子可以是-1、0或1,如果平衡因子的绝对值超过1,则该节点被认为是不平衡的


⭕AVL树维护以下性质:

  1. 树的每个节点的平衡因子必须在-1、0和1之间。
  2. 所有左子树的高度与右子树的高度之差的绝对值不超过1。
  3. 如果它有n个结点,其高度可保持在 O(log_2 n),搜索时间复杂度O(log2n)

当向AVL树中插入或删除节点时,可能会破坏树的平衡。为了恢复平衡,AVL树使用四种旋转操作:左旋、右旋、左右旋和右左旋。通过这些旋转操作,AVL树可以在插入或删除操作后保持平衡,从而提供较为稳定和高效的搜索、插入和删除操作。

由于AVL树的自平衡特性,它适用于需要频繁插入和删除操作的场景,尤其是对于需要快速搜索和有序遍历的数据集合。如果一棵二叉搜索树是高度平衡的,它就是AVL树。

二、AVL树节点的定义

AVL树的节点定义包括以下几个属性:

  1. :每个节点存储的值,可以是任意类型,通常是一个关键字或数据。
  2. 左子节点指针:指向当前节点的左子节点的指针。左子节点的值应该小于或等于当前节点的值。
  3. 右子节点指针:指向当前节点的右子节点的指针。右子节点的值应该大于当前节点的值。
  4. 父节点指针:指向当前节点的父节点的指针。根节点的父节点指针为空。
  5. 平衡因子:表示当前节点的左子树高度和右子树高度之差。平衡因子可以为-1、0或1。

下面是一个示例代码来定义一个AVL树的节点结构:

template<class K, class V>
struct AVLTreeNode
{
  AVLTreeNode<K, V>* _left;
  AVLTreeNode<K, V>* _right;
  AVLTreeNode<K, V>* _parent;
  pair<K, V> _kv;
  int _bf; // balance factor

  AVLTreeNode(const pair<K, V>& kv)
    :_left(nullptr)
    , _right(nullptr)
    , _parent(nullptr)
    , _kv(kv)
    , _bf(0)
  {}
};

三、AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为两步:

  1. 按照二叉搜索树的方式插入新节点
  2. 调整节点的平衡因子


下面是AVL树的插入的基本算法:

  • 如果AVL树为空,将新节点作为根节点插入,并更新其高度和平衡因子。
  • 如果插入的值小于当前节点的值,则将其插入到当前节点的左子树中。如果左子节点为空,直接插入;否则,递归执行插入操作。
  • 如果插入的值大于当前节点的值,则将其插入到当前节点的右子树中。如果右子节点为空,直接插入;否则,递归执行插入操作。
  • 在递归返回的过程中,更新每个节点的高度和平衡因子,然后检查平衡因子是否超过了范围。
    如果发现平衡因子超出范围,进行旋转操作来修复平衡。

下面是一个基于C++实现的AVL树插入算法的伪代码:

bool Insert(const pair<K, V>& kv)
{
    if (_root == nullptr)
    {
        // 如果根节点为空,创建新节点作为根节点,并返回插入成功
        _root = new Node(kv);
        return true;
    }

    Node* parent = nullptr;
    Node* cur = _root;
    while (cur)
    {
        if (cur->_kv.first < kv.first)
        {
            // 当前节点的键值小于插入节点的键值,继续向右子树查找
            parent = cur;
            cur = cur->_right;
        }
        else if (cur->_kv.first > kv.first)
        {
            // 当前节点的键值大于插入节点的键值,继续向左子树查找
            parent = cur;
            cur = cur->_left;
        }
        else
        {
            // 当前节点的键值等于插入节点的键值,插入失败(不允许键值重复)
            return false;
        }
    }

    // 创建新节点并插入到树中
    cur = new Node(kv);
    if (parent->_kv.first > kv.first)
    {
        parent->_left = cur;
    }
    else
    {
        parent->_right = cur;
    }
    cur->_parent = parent;

    // 更新平衡因子
    while (parent)
    {
        if (cur == parent->_right)
        {
            parent->_bf++; // 右子树增加一个节点,平衡因子加1
        }
        else
        {
            parent->_bf--; // 左子树增加一个节点,平衡因子减1
        }

        if (parent->_bf == 1 || parent->_bf == -1)
        {
            // 平衡因子为1或-1,说明子树高度增加,继续更新父节点的平衡因子
            parent = parent->_parent;
            cur = cur->_parent;
        }
        else if (parent->_bf == 0)
        {
            // 平衡因子为0,说明子树高度没有变化,不需要进行旋转操作,结束循环
            break;
        }
        else if (parent->_bf == 2 || parent->_bf == -2)
        {
            // 平衡因子为2或-2,需要进行旋转处理来恢复平衡

            if (parent->_bf == 2 && cur->_bf == 1)
            {
                RotateL(parent); // 左旋
            }
            else if (parent->_bf == -2 && cur->_bf == -1)
            {
                RotateR(parent); // 右旋
            }
            else if (parent->_bf == -2 && cur->_bf == 1)
            {
                RotateLR(parent); // 先左旋再右旋
            }
            else if (parent->_bf == 2 && cur->_bf == -1)
            {
                RotateRL(parent); // 先右旋再左旋
            }
            else
            {
                assert(false); // 不应该出现的情况
            }

            break;
        }
        else
        {
            assert(false); // 不应该出现的情况
        }
    }

    return true;
}

⭕代码解释:

  1. 首先检查根节点是否为空,在空树中直接创建新节点作为根节点。
  2. 如果不是空树,则通过循环在适当的位置找到插入节点应该放置的父节点。
  3. 在插入节点时,根据父节点的键值与插入节点的键值的比较结果,确定插入节点是父节点的左子节点还是右子节点。
  4. 更新插入节点的父指针,并更新父节点及其祖先节点的平衡因子。
  5. 根据平衡因子的变化情况,决定是否需要进行旋转操作来调整树的平衡。
  6. 旋转操作分为左旋、右旋、先左旋再右旋和先右旋再左旋四种情况,具体根据平衡因子的值来确定。

四、AVL树的旋转(重点)

1. 右单旋(新节点插入较高左子树的左侧)

  • 右单旋是AVL树的一种旋转操作,用于解决插入节点位于较高左子树的左侧的情况。

下面是右单旋的具体实现代码:

void RotateR(Node* parent)
{
    Node* subL = parent->_left;    // 获取父节点的左子节点
    Node* subLR = subL->_right;    // 获取左子节点的右子节点
    Node* ppnode = parent->_parent;    // 获取父节点的父节点

    parent->_left = subLR;    // 将左子节点的右子节点作为父节点的左子节点
    if (subLR)
        subLR->_parent = parent;    // 更新左子节点的右子节点的父指针

    subL->_right = parent;    // 将父节点作为左子节点的右子节点
    parent->_parent = subL;    // 更新父节点的父指针

    if (parent == _root)
    {
        _root = subL;    // 如果原父节点是根节点,更新根节点
        _root->_parent = nullptr;
    }
    else
    {
        if (ppnode->_left == parent)
        {
            ppnode->_left = subL;    // 如果原父节点是其父节点的左子节点,更新父节点的左子节点
        }
        else
        {
            ppnode->_right = subL;    // 如果原父节点是其父节点的右子节点,更新父节点的右子节点
        }
        subL->_parent = ppnode;    // 更新左子节点的父指针
    }
    subL->_bf = parent->_bf = 0;    // 更新平衡因子
}

⭕具体而言,右单旋的操作步骤如下:

  1. 获取当前节点的左子节点,并将其保存在变量 subL 中。
  2. 获取左子节点的右子节点,并将其保存在变量 subLR 中。
  3. 获取当前节点的父节点,并将其保存在变量 ppnode 中。
  4. 将左子节点的右子节点作为当前节点的左子节点。
  5. 如果左子节点的右子节点存在,则将其父指针更新为当前节点。
  6. 将当前节点作为左子节点的右子节点。
  7. 更新当前节点的父指针为左子节点。
  8. 如果当前节点是根节点,则更新根节点为左子节点,并将根节点的父指针置为空。
  9. 如果当前节点不是根节点,则根据其在父节点的位置,更新父节点的相应子节点为左子节点,并将左子节点的父指针更新为父节点。
  10. 将左子节点和当前节点的平衡因子都设置为0,表示树已经平衡。

右单旋操作通过对节点间的指针进行调整,重新平衡了AVL树的结构。这样做的目的是保持AVL树的平衡性,从而提高树的查询和插入等操作的效率。

2. 左单旋(新节点插入较高右子树的右侧)

  • 左单旋是AVL树的一种旋转操作,用于解决插入节点位于较高右子树的右侧的情况。

下面是左单旋的具体实现代码:

void RotateL(Node* parent)
{
    // 保存父节点的右子节点
    Node* subR = parent->_right;
    // 保存右子节点的左子节点
    Node* subRL = subR->_left;
    // 保存父节点的父节点
    Node* ppnode = parent->_parent;

    // 将右子节点的左子节点作为父节点的右子节点
    parent->_right = subRL;
    if (subRL)
        subRL->_parent = parent;

    // 将父节点作为右子节点的左子节点
    subR->_left = parent;
    parent->_parent = subR;

    // 判断原父节点是否为根节点
    if (ppnode == nullptr) 
    {
        // 更新根节点为右子节点
        _root = subR;
        // 将新根节点的父指针置为空
        _root->_parent = nullptr;
    }
    else
    {
        // 判断原父节点是其父节点的左子节点还是右子节点
        if (ppnode->_left == parent)
        {
            // 更新父节点的左子节点为右子节点
            ppnode->_left = subR;
        }
        else
        {
            // 更新父节点的右子节点为右子节点
            ppnode->_right = subR;
        }
        // 更新右子节点的父指针为父节点的父节点
        subR->_parent = ppnode;
    }

    // 将父节点和右子节点的平衡因子都设置为0,表示树已经平衡
    parent->_bf = subR->_bf = 0;
}

⭕具体而言,左单旋的操作步骤如下:

  1. 保存了需要进行旋转操作的父节点、父节点的右子节点和右子节点的左子节点。
  2. 更新父节点的右子节点为右子节点的左子节点,并将右子节点的左子节点的父指针指向父节点。
  3. 将父节点的父指针指向右子节点,并将右子节点的左子节点指向父节点。
  4. 判断原父节点是否为根节点,若是,更新根节点为右子节点,并将新根节点的父指针置为空;若不是,根据父节点在其父节点的位置,分别更新其父节点的左子节点或右子节点为右子节点,并将右子节点的父指针指向父节点的父节点。
  5. 最后,将父节点和右子节点的平衡因子都设置为0,表示树已经平衡。

3. 先左单旋再右单旋(新节点插入较高左子树的右侧)

将双旋变成单旋后再旋转,即:先对30这个节点进行左单旋,然后再对90这个节点进行右单旋,旋转完成后再考虑平衡因子的更新。

下面是先左单旋再右单旋的具体实现代码:

void RotateLR(Node* parent)
{
  // 获取节点C的左子节点A和节点A的右子节点D
  Node* subL = parent->_left;
  Node* subLR = subL->_right;

  // 获取节点D的平衡因子,以便后续调整平衡因子时使用
  int bf = subLR->_bf;

  // 对节点A进行左单旋,注意此时节点C的左子节点为节点D,节点D的右子节点为节点A
  RotateL(parent->_left);

  // 对节点C进行右单旋,此时节点D成为新的子树头节点,节点C成为节点D的右子节点
  RotateR(parent);

  // 调整平衡因子
  if (bf == 1) // 如果节点D的平衡因子为1,说明节点D的左子树比右子树高
  {
    parent->_bf = 0; // 节点C的平衡因子变为0
    subLR->_bf = 0; // 节点D的平衡因子变为0
    subL->_bf = -1; // 节点A的平衡因子变为-1,因为它的右子树高度比左子树高度大1
  }
  else if (bf == -1) // 如果节点D的平衡因子为-1,说明节点D的右子树比左子树高
  {
    parent->_bf = 1; // 节点C的平衡因子变为1
    subLR->_bf = 0; // 节点D的平衡因子变为0
    subL->_bf = 0; // 节点A的平衡因子变为0,因为它的左右子树高度相等
  }
  else if (bf == 0) // 如果节点D的平衡因子为0,说明节点D的左右子树高度相等
  {
    parent->_bf = 0; // 节点C的平衡因子变为0
    subLR->_bf = 0; // 节点D的平衡因子变为0
    subL->_bf = 0; // 节点A的平衡因子变为0,因为它的左右子树高度相等
  }
  else // 如果节点D的平衡因子不是1、-1或者0,则说明AVL树已经失去了平衡,这是一个不合法的状态,应该立即报错退出程序。
  {
    assert(false);
  }
}

⭕具体而言,先左单旋再右单旋的操作步骤如下:

  • 首先获取节点C的左子节点A(subL)和节点A的右子节点D(subLR);
  • 然后对节点A进行左单旋(RotateL),此时节点C的左子节点应为节点D,节点D的右子节点应为节点A;
  • 最后对节点C进行右单旋(RotateR),此时节点D成为新的子树头节点,节点C成为节点D的右子节点。

最后一部分使用了if语句判断旋转后各个节点的平衡因子,并进行相应的调整,以便使AVL树保持平衡。

  • 如果节点D的平衡因子为1,说明节点D的左子树比右子树高,需要进行右旋操作,这一次旋转中节点C和节点A都向右移动了一位,而节点D的平衡因子变为0,节点A和节点C的平衡因子都变为-1;
  • 如果节点D的平衡因子为-1,说明节点D的右子树比左子树高,需要进行左旋操作,这一次旋转中节点C和节点A都向左移动了一位,而节点D的平衡因子变为0,节点A和节点C的平衡因子都变为1;
  • 如果节点D的平衡因子为0,说明节点D的左右子树高度相等,不需要进行旋转操作,各个节点的平衡因子均设置为0;
  • 如果节点D的平衡因子不是1、-1或者0,则说明AVL树已经失去了平衡,这是一个不合法的状态,应该立即报错退出程序。
  • 经过这两次旋转后,AVL树重新保持了平衡性和有序性。

4. 先右单旋再左单旋(新节点插入较高右子树的左侧)

将双旋变成单旋后再旋转,即:先对90这个节点进行右单旋,然后再对30这个节点进行左单旋,旋转完成后再考虑平衡因子的更新。

下面是先右单旋再左单旋的具体实现代码:

void RotateRL(Node* parent)
{
  // 获取节点C的右子节点B和节点B的左子节点E
  Node* subR = parent->_right;
  Node* subRL = subR->_left;

  // 获取节点E的平衡因子,以便后续调整平衡因子时使用
  int bf = subRL->_bf;

  // 对节点B进行右单旋,注意此时节点C的右子节点为节点E,节点E的左子节点为节点B
  RotateR(parent->_right);

  // 对节点C进行左单旋,此时节点E成为新的子树头节点,节点C成为节点E的左子节点
  RotateL(parent);

  // 调整平衡因子
  if (bf == 1) // 如果节点E的平衡因子为1,说明节点E的左子树比右子树高
  {
    parent->_bf = -1; // 节点C的平衡因子变为-1
    subRL->_bf = 0; // 节点E的平衡因子变为0
    subR->_bf = 0; // 节点B的平衡因子变为0,因为它的左右子树高度相等
  }
  else if (bf == -1) // 如果节点E的平衡因子为-1,说明节点E的右子树比左子树高
  {
    parent->_bf = 0; // 节点C的平衡因子变为0
    subRL->_bf = 0; // 节点E的平衡因子变为0
    subR->_bf = 1; // 节点B的平衡因子变为1,因为它的右子树高度比左子树高度大1
  }
  else if (bf == 0) // 如果节点E的平衡因子为0,说明节点E的左右子树高度相等
  {
    parent->_bf = 0; // 节点C的平衡因子变为0
    subRL->_bf = 0; // 节点E的平衡因子变为0
    subR->_bf = 0; // 节点B的平衡因子变为0,因为它的左右子树高度相等
  }
  else // 如果节点E的平衡因子不是1、-1或者0,则说明AVL树已经失去了平衡,这是一个不合法的状态,应该立即报错退出程序。
  {
    assert(false);
  }
}

具体过程跟先左单旋再右单旋的过程一样,只不过是顺序有所不一样,这里就不多赘述了。

五、AVL树的删除(了解)

AVL树节点的删除是一个相对复杂的操作,需要考虑多种情况来保持树的平衡性,下面是对它的步骤简单的介绍:

  1. 首先,按照二叉搜索树的规则找到需要删除的节点。如果目标节点不存在,则删除操作结束。
  2. 如果删除的节点是叶子节点(没有子节点),可以直接删除它。此时,只需将其父节点指向它的指针置为空即可。
  3. 如果删除的节点有一个子节点,可以用子节点替代删除的节点。此时,只需将删除节点的父节点指向删除节点的子节点,并删除删除节点。
  4. 如果删除的节点有两个子节点,需要选择一个合适的替代节点来代替删除的节点。一般可以选择删除节点的中序遍历前驱或后继节点作为替代节点。
  5. 选择中序遍历的前驱节点作为替代节点的一种常见策略是:在删除节点的左子树上找到最大的节点,它将成为替代节点。如果选择后继节点作为替代节点,则在删除节点的右子树上找到最小的节点。
  6. 将选择的替代节点的值复制到删除的节点上,并删除替代节点。这样相当于删除了目标节点,但保持了二叉搜索树的结构。
  7. 此时可能导致树失去平衡,需要进行平衡调整。从替代节点的父节点开始,向上遍历到根节点,在每个遍历的节点上根据需要进行左旋、右旋或双旋转等操作。
  8. 在每个遍历节点上,需要更新其高度和平衡因子。如果删除节点后,遍历节点的平衡因子绝对值大于1,则需要进行旋转操作来恢复平衡。
  9. 最后,验证树是否仍然满足AVL树的平衡性和二叉搜索树的性质。可以从根节点开始递归地检查每个节点的平衡因子是否在[-1, 1]的范围内,且左子树的所有节点值小于节点值,右子树的所有节点值大于节点值。

🚨🚨注意:AVL树的节点删除可能触发多次旋转以保持树的平衡,这可能导致性能开销较大。因此,在实际应用中,可以考虑使用其他平衡二叉搜索树的变种,如红黑树,它在插入和删除操作上可能更加高效。后面博主也会对红黑树进行详细的介绍。

六、AVL树的性能

1.查找操作:AVL树是一种二叉搜索树,查找操作的平均时间复杂度为O(l o g n log nlogn),其中n是树中节点的数量。由于AVL树保持了平衡性,树的高度较低,因此在大多数情况下,查找操作非常高效。


2.插入和删除操作:由于插入和删除操作可能引起树的不平衡,需要进行旋转操作来恢复平衡。这些旋转操作的时间复杂度为O(1 11)或O(l o g n log nlogn),但由于旋转操作只在沿着路径上最多影响O(l o g n log nlogn)个节点,所以插入和删除操作的平均时间复杂度仍然是O(l o g n log nlogn)。


3.空间复杂度:AVL树与普通二叉搜索树相比,需要额外存储平衡因子来维护树的平衡性。平衡因子通常使用一个额外的字节来表示,因此额外的空间消耗也是O(n nn)。


4.平衡维护开销:当进行插入和删除操作时,AVL树需要保持树的平衡性,这可能导致一系列旋转操作。这些旋转操作的开销取决于树的深度和失衡点的位置。在最坏情况下,进行插入和删除操作时可能需要进行O(l o g n log nlogn)次旋转操作,因此平衡维护的开销相对较高。

附:详细的AVL模拟代码

template<class K, class V>
struct AVLTreeNode
{
  AVLTreeNode<K, V>* _left;
  AVLTreeNode<K, V>* _right;
  AVLTreeNode<K, V>* _parent;
  pair<K, V> _kv;
  int _bf; // balance factor

  AVLTreeNode(const pair<K, V>& kv)
    :_left(nullptr)
    , _right(nullptr)
    , _parent(nullptr)
    , _kv(kv)
    , _bf(0)
  {}
};

template<class K, class V>
class AVLTree
{
  typedef AVLTreeNode<K, V> Node;
public:
  bool Insert(const pair<K, V>& kv)
  {
    if (_root == nullptr)
    {
      _root = new Node(kv);
      return true;
    }

    Node* parent = nullptr;
    Node* cur = _root;
    while (cur)
    {
      if (cur->_kv.first < kv.first)
      {
        parent = cur;
        cur = cur->_right;
      }
      else if (cur->_kv.first > kv.first)
      {
        parent = cur;
        cur = cur->_left;
      }
      else
      {
        return false;
      }
    }

    cur = new Node(kv);
    if (parent->_kv.first > kv.first)
    {
      parent->_left = cur;
    }
    else
    {
      parent->_right = cur;
    }
    cur->_parent = parent;

    // 更新平衡因子
    while (parent)
    {
      if (cur == parent->_right)
      {
        parent->_bf++;
      }
      else
      {
        parent->_bf--;
      }

      if (parent->_bf == 1 || parent->_bf == -1)
      {
        // 继续更新
        parent = parent->_parent;
        cur = cur->_parent;
      }
      else if (parent->_bf == 0)
      {
        break;
      }
      else if (parent->_bf == 2 || parent->_bf == -2)
      {
        // 需要旋转处理 -- 1、让这颗子树平衡 2、降低这颗子树的高度
        if (parent->_bf == 2 && cur->_bf == 1)
        {
          RotateL(parent);
        }
        else if (parent->_bf == -2 && cur->_bf == -1)
        {
          RotateR(parent);
        }
        else if (parent->_bf == -2 && cur->_bf == 1)
        {
          RotateLR(parent);
        }
        else if (parent->_bf == 2 && cur->_bf == -1)
        {
          RotateRL(parent);
        }
        else
        {
          assert(false);
        }

        break;
      }
      else
      {
        assert(false);
      }
    }

    return true;
  }
  void InOrder()
  {
    _InOrder(_root);
    cout << endl;
  }

  bool IsBalance()
  {
    return _IsBalance(_root);
  }

  int Height()
  {
    return _Height(_root);
  }
private:

  void _InOrder(Node* root)
  {
    if (root == nullptr)
    {
      return;
    }

    _InOrder(root->_left);
    cout << root->_kv.first << " ";
    _InOrder(root->_right);
  }
  int _Height(Node* root)
  {
    if (root == NULL)
      return 0;

    int leftH = _Height(root->_left);
    int rightH = _Height(root->_right);

    return leftH > rightH ? leftH + 1 : rightH + 1;
  }
  bool _IsBalance(Node* root)
  {
    if (root == nullptr)
      return true;
    int leftH = _Height(root->_left);
    int rightH = _Height(root->_right);

    if (rightH - leftH != root->_bf)
    {
      cout << root->_kv.first << "节点平衡因子异常" << endl;
      return false;
    }

    return abs(leftH - rightH) < 2
      && _IsBalance(root->_left)
      && _IsBalance(root->_right);

  }
  void RotateL(Node* parent)
  {
    Node* subR = parent->_right;
    Node* subRL = subR->_left;
    Node* ppnode = parent->_parent;
    parent->_right = subRL;
    if (subRL)
      subRL->_parent = parent;
    subR->_left = parent;
    parent->_parent = subR;
    if (ppnode == nullptr)
    {
      _root = subR;
      _root->_parent = nullptr;
    }
    else
    {
      if (ppnode->_left == parent)
      {
        ppnode->_left = subR;
      }
      else
      {
        ppnode->_right = subR;
      }
      subR->_parent = ppnode;
    }
    parent->_bf = subR->_bf = 0;
  }
  void RotateR(Node* parent)
  {
    Node* subL = parent->_left;
    Node* subLR = subL->_right;
    Node* ppnode = parent->_parent;
    parent->_left = subLR;
    if (subLR)
      subLR->_parent = parent;
    subL->_right = parent;
    parent->_parent = subL;
    if (parent == _root)
    {
      _root = subL;
      _root->_parent = nullptr;
    }
    else
    {
      if (ppnode->_left == parent)
      {
        ppnode->_left = subL;
      }
      else
      {
        ppnode->_right = subL;
      }
      subL->_parent = ppnode;
    }
    subL->_bf = parent->_bf = 0;
  }
  void RotateLR(Node* parent)
  {
    Node* subL = parent->_left;
    Node* subLR = subL->_right;
    int bf = subLR->_bf;

    RotateL(parent->_left);
    RotateR(parent);

    if (bf == 1)
    {
      parent->_bf = 0;
      subLR->_bf = 0;
      subL->_bf = -1;
    }
    else if (bf == -1)
    {
      parent->_bf = 1;
      subLR->_bf = 0;
      subL->_bf = 0;
    }
    else if (bf == 0)
    {
      parent->_bf = 0;
      subLR->_bf = 0;
      subL->_bf = 0;
    }
    else
    {
      assert(false);
    }
  }
  void RotateRL(Node* parent)
  {
    Node* subR = parent->_right;
    Node* subRL = subR->_left;
    int bf = subRL->_bf;

    RotateR(parent->_right);
    RotateL(parent);
    if (bf == 1)
    {
      parent->_bf = -1;
      subRL->_bf = 0;
      subR->_bf = 0;
    }
    else if (bf == -1)
    {
      parent->_bf = 0;
      subRL->_bf = 0;
      subR->_bf = 1;
    }
    else if (bf == 0)
    {
      parent->_bf = 0;
      subRL->_bf = 0;
      subR->_bf = 0;
    }
    else
    {
      assert(false);
    }

  }


  Node* _root = nullptr;
};

温馨提示

感谢您对博主文章的关注与支持!另外,我计划在未来的更新中持续探讨与本文相关的内容,会为您带来更多关于C++以及编程技术问题的深入解析、应用案例和趣味玩法等。请继续关注博主的更新,不要错过任何精彩内容!

再次感谢您的支持和关注。期待与您建立更紧密的互动,共同探索C++、算法和编程的奥秘。祝您生活愉快,排便顺畅!


目录
相关文章
|
1月前
|
编译器 C++
C++入门12——详解多态1
C++入门12——详解多态1
38 2
C++入门12——详解多态1
|
1月前
|
编译器 C语言 C++
C++入门3——类与对象2-2(类的6个默认成员函数)
C++入门3——类与对象2-2(类的6个默认成员函数)
23 3
|
1月前
|
存储 编译器 C语言
C++入门2——类与对象1(类的定义和this指针)
C++入门2——类与对象1(类的定义和this指针)
29 2
|
1月前
|
C++
C++入门13——详解多态2
C++入门13——详解多态2
79 1
|
1月前
|
程序员 C语言 C++
C++入门5——C/C++动态内存管理(new与delete)
C++入门5——C/C++动态内存管理(new与delete)
67 1
|
1月前
|
编译器 C语言 C++
C++入门4——类与对象3-1(构造函数的类型转换和友元详解)
C++入门4——类与对象3-1(构造函数的类型转换和友元详解)
19 1
|
1月前
|
存储 编译器 C++
C++入门3——类与对象2-1(类的6个默认成员函数)
C++入门3——类与对象2-1(类的6个默认成员函数)
30 1
|
1月前
|
编译器 C语言 C++
C++入门6——模板(泛型编程、函数模板、类模板)
C++入门6——模板(泛型编程、函数模板、类模板)
41 0
C++入门6——模板(泛型编程、函数模板、类模板)
|
1月前
|
存储 安全 编译器
【C++打怪之路Lv1】-- 入门二级
【C++打怪之路Lv1】-- 入门二级
23 0
|
1月前
|
自然语言处理 编译器 C语言
【C++打怪之路Lv1】-- C++开篇(入门)
【C++打怪之路Lv1】-- C++开篇(入门)
24 0