【AI】生成式AI,对话式AI,LLM,SLM 差异分析

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: 【5月更文挑战第6天】生成式AI,对话式AI,LLM,SLM 学习

[toc]


一个包含许多概念和缩写的标题,别担心,下面我将为你一一解释,谷歌趋势显示,生成式人工智能是讨论最多的流行语:
image.png

这是有道理的,因为生成式人工智能代表了最广泛的类别。它涵盖了所有旨在生成新内容的人工智能系统,这些内容可能是由人类创造的。
image.png

一、生成式AI

生成式 AI 旨在创建类似于真实的人类生成材料的新内容或数据。这些系统可以根据从训练数据中学到的模式和结构生成各种各样的输出,包括文本、图像、音乐甚至视频。

1. 生成式人工智能示例 – 自己的知识库聊天机器人

你有关于你的产品或解决方案的大量内容吗?您可以将它们转变为聊天机器人,为您的客户提供帮助并减轻支持团队的一些负担。

或者,您可能想在内部使用聊天机器人,根据您网站上已有的内容来支持您在内容生成方面的营销和销售。我们团队内部开发的聊天机器人就是这种情况。

我们的内部聊天机器人处理我们网页上的信息,包括数百篇博客文章,提供对数十人十年来生成的内容的最快访问。

二、LLM VS SLM

语言模型是特定类型的生成式 AI,专注于处理和生成文本。

1. 大型语言模型 (LLM)
LLM 理解、生成和处理自然语言文本。这些模型在大量文本数据上进行训练,使它们能够理解上下文,生成连贯且相关的文本,并执行各种基于语言的任务,例如翻译、摘要和问答。

2. 小型语言模型 (SLM)
SLM 与大型语言模型 (LLM) 具有相同的用途,但它们在较少的数据量上进行训练。因此,与 LLM 相比,它们需要的计算资源要少得多。尽管规模较小,但 SLM 旨在在各种自然语言处理任务(包括文本生成、分类和翻译)上保持高水平的性能。选择 SLM 可以使您的应用程序在更广泛的设备上更易于访问,甚至可以启用脱机功能。

三、对话式AI

对话式 AI 是 AI 技术的一种应用,通常利用 LLM、SLM 或不同 AI 模型的组合来模拟类似人类的对话。通过使用自然语言处理 (NLP)、机器学习,有时还有语音识别技术,它以一种既有意义又与上下文相关的方式理解、处理和响应人类语言。

对话式 AI 使计算机能够模拟类似人类的对话。这包括一系列应用,包括聊天机器人、语音助手和交互式语音应答 (IVR) 系统。

目录
相关文章
|
1月前
|
存储 机器学习/深度学习 算法
​​LLM推理效率的范式转移:FlashAttention与PagedAttention正在重塑AI部署的未来​
本文深度解析FlashAttention与PagedAttention两大LLM推理优化技术:前者通过分块计算提升注意力效率,后者借助分页管理降低KV Cache内存开销。二者分别从计算与内存维度突破性能瓶颈,显著提升大模型推理速度与吞吐量,是当前高效LLM系统的核心基石。建议收藏细读。
468 125
|
5天前
|
存储 人工智能 安全
云栖大会|AI驱动的智能数据湖仓,高性能实时分析与深度洞察
2025云栖大会“AI驱动的智能数据湖仓”专场,汇聚夺畅、聚水潭、零跑汽车等企业及阿里云瑶池团队,分享AI时代下数据管理到分析的全链路实践,涵盖智能计算、弹性架构、多模态处理与数据安全,共探Data+AI融合新范式。
|
13天前
|
存储 人工智能 Java
AI 超级智能体全栈项目阶段四:学术分析 AI 项目 RAG 落地指南:基于 Spring AI 的本地与阿里云知识库实践
本文介绍RAG(检索增强生成)技术,结合Spring AI与本地及云知识库实现学术分析AI应用,利用阿里云Qwen-Plus模型提升回答准确性与可信度。
396 90
AI 超级智能体全栈项目阶段四:学术分析 AI 项目 RAG 落地指南:基于 Spring AI 的本地与阿里云知识库实践
|
27天前
|
存储 人工智能 Java
AI 超级智能体全栈项目阶段二:Prompt 优化技巧与学术分析 AI 应用开发实现上下文联系多轮对话
本文讲解 Prompt 基本概念与 10 个优化技巧,结合学术分析 AI 应用的需求分析、设计方案,介绍 Spring AI 中 ChatClient 及 Advisors 的使用。
724 133
AI 超级智能体全栈项目阶段二:Prompt 优化技巧与学术分析 AI 应用开发实现上下文联系多轮对话
|
2月前
|
数据采集 人工智能 分布式计算
ODPS在AI时代的发展战略与技术演进分析报告
ODPS(现MaxCompute)历经十五年发展,从分布式计算平台演进为AI时代的数据基础设施,以超大规模处理、多模态融合与Data+AI协同为核心竞争力,支撑大模型训练与实时分析等前沿场景,助力企业实现数据驱动与智能化转型。
306 4
|
16天前
|
Web App开发 人工智能 自然语言处理
利用Playwright MCP与LLM构建复杂的工作流与AI智能体
本文介绍如何通过Playwright MCP与大语言模型(LLM)结合,构建智能AI代理与自动化工作流。Playwright MCP基于Model Context Protocol,打通LLM与浏览器自动化的能力,实现自然语言驱动的网页操作。涵盖环境配置、核心组件、智能任务规划、自适应执行及电商采集、自动化测试等实战应用,助力高效构建鲁棒性强、可扩展的AI自动化系统。
|
23天前
|
机器学习/深度学习 缓存 监控
139_剪枝优化:稀疏模型压缩 - 分析结构化剪枝的独特速度提升与LLM部署加速实践
随着大语言模型(LLM)规模的不断增长,模型参数量已从最初的数亿扩展到数千亿甚至万亿级别。这种规模的模型在推理过程中面临着巨大的计算和内存挑战,即使在最先进的硬件上也难以高效部署。剪枝优化作为一种有效的模型压缩技术,通过移除冗余或不重要的参数,在保持模型性能的同时显著减少计算资源需求。
|
1月前
|
人工智能 关系型数据库 数据库
公募REITs专属AI多智能体查询分析项目
公募REITs专属AI多智能体查询分析项目。本项目是基于 OpenAI Agent 框架的多智能体项目,提供二级市场数据查询分析、招募说明书内容检索、公告信息检索、政策检索等多板块查询服务。支持图标绘制、文件生成。
公募REITs专属AI多智能体查询分析项目
|
23天前
|
SQL 数据采集 自然语言处理
04_用LLM分析数据:从表格到可视化报告
在当今数据驱动的时代,数据分析和可视化已成为商业决策、科学研究和日常工作中不可或缺的部分。随着大型语言模型(LLM)技术的飞速发展,2025年的数据分析领域正经历一场革命。传统的数据处理流程通常需要数据科学家掌握复杂的编程技能和统计知识,而现在,借助先进的LLM技术,即使是非技术人员也能轻松地从原始数据中获取洞见并创建专业的可视化报告。
|
1月前
|
人工智能
AI推理方法演进:Chain-of-Thought、Tree-of-Thought与Graph-of-Thought技术对比分析
大语言模型推理能力不断提升,从早期的规模扩展转向方法创新。2022年Google提出Chain-of-Thought(CoT),通过展示推理过程显著提升模型表现。随后,Tree-of-Thought(ToT)和Graph-of-Thought(GoT)相继出现,推理结构由线性链条演进为树状分支,最终发展为支持多节点连接的图网络。CoT成本低但易错传,ToT支持多路径探索与回溯,GoT则实现非线性、多维推理,适合复杂任务。三者在计算成本与推理能力上形成递进关系,推动AI推理向更接近人类思维的方向发展。
168 4

热门文章

最新文章