R语言汽车口碑数据采集抓取、文本数据分词和词云可视化实现

简介: R语言汽车口碑数据采集抓取、文本数据分词和词云可视化实现


本文以R语言为工具,帮助客户对汽车网站的口碑数据进行抓取,并基于文本数据分词技术进行数据清理和统计点击文末“阅读原文”获取完整代码数据

相关视频

image.png

通过词频统计和词云可视化,对口碑中的关键词进行分析,挖掘出消费者对汽车的评价和需求,为汽车制造商和销售商提供重要的市场参考。

随着社会经济的不断发展,汽车已经成为人们日常生活中不可或缺的交通工具。汽车口碑对于消费者购车决策起着至关重要的作用,同时也是汽车制造商和销售商了解市场需求、改进产品质量和服务的重要依据。传统的汽车口碑调查方式往往需要耗费大量的人力物力,而网络上的汽车口碑数据正逐渐成为研究汽车市场和消费者需求的重要数据来源。然而,如何高效地获取和分析这些数据变得越来越重要。因此,本文利用R语言的数据抓取和文本数据分词技术,对汽车网站的口碑数据进行抓取和分析,旨在为汽车行业提供更准确、更快速的市场研究手段。

本文主要实现以下两个目标:

  • 基于R语言的数据抓取部分。这一部分里面所有的结果都要实现
  • 基于R语言的文本数据分词

在每一页评价内容的抓取中 , 依然使用 xpath SApply 函数,再输入特定的 XML 路径来抓取网页上的用户评价内容

library(RCurl)
 Also load the other required package.  
library("methods")  
xpath <- '//div[@class=\"co81\"]'  
  
url <-"www.chekb.com/suonata/koubei/"

27cea5f39c4ce193b630f372abf40aed.png


pagetree <- htmlTreeParse(webpage, error=function(...){}, useInternalNodes = TRUE,encoding="UTF-8")  
   pagetree  
   value <- getNodeSet(pagetree,xpath)  
   
  i <- length(value)                     统计满足条件的值个数,一般情况为1

读入数据

将需要分析的文本放入记事本中,保存到相应路径,并在R中打开。

head(lecture)

783037a608d813f86a7a59e8e3a866b8.png

数据清理

js

lecture$评价=gsub(pattern="[1|2|3|4|5|6|7|8|9|0]"," ",lecture$评价);        
lecture$评价=gsub(pattern="/"," ",lecture$评价);    
lecture$评价=gsub(pattern="!"," ",lecture$评价);
......

grepl 函数的 regexpr 函数、regmatches 函数,并结合正则表达式来匹配出“非灰色用户”的主页链接

grepl(pattern = "中国",x = lecture$网友)

分词+统计词频

word=lapply(X=words, FUN=stit, " ")  
v=table(unlist(word))

1b0f76d63ccad1b1c9120b6ecd5168b0.png

点击标题查阅往期内容


NLP自然语言处理—主题模型LDA案例:挖掘人民网留言板文本数据



左右滑动查看更多

6b1c5fbaf59b0e92a09547308996b1a9.png

统计数据的频数

对词频进行排序table函数得到各词组的词频,最后运用 sort 函数让其按词频降序排列,生成文档词矩阵

创建数据框

d=data.frame(词汇=names(v), 词频=v)  
d

8d02335e0b52b4cb8689b26a6d41895f.png

过滤掉1个字的结果和词频小于100的结果。

筛选标准大家可以根据自己的需求进行修改。

d1=subet(d, nchar(as.charr(d$词汇))>1 & d$词.Freq>=2)



(2)设置字体类型和字体颜色

mycolors <- brewer.pal(12,"Paired")

(3)画出标签云

dcloud(d1$词汇,d1$词频.Freq,random.order=FALSE,random.color=TRUE,colors=mycolors,family="myFont")

58452b3e69267bd86646a20eb1aa3eb0.png

相关文章
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
3月前
|
数据可视化 数据挖掘 图形学
R语言基础可视化:使用ggplot2构建精美图形的探索
【8月更文挑战第29天】 `ggplot2`是R语言中一个非常强大的图形构建工具,它基于图形语法提供了一种灵活且直观的方式来创建各种统计图形。通过掌握`ggplot2`的基本用法和美化技巧,你可以轻松地将复杂的数据转化为直观易懂的图形,从而更好地理解和展示你的数据分析结果。希望本文能够为你探索`ggplot2`的世界提供一些帮助和启发。
|
3月前
|
存储 数据采集 数据处理
R语言数据变换:使用tidyr包进行高效数据整形的探索
【8月更文挑战第29天】`tidyr`包为R语言的数据整形提供了强大的工具。通过`pivot_longer()`、`pivot_wider()`、`separate()`和`unite()`等函数,我们可以轻松地将数据从一种格式转换为另一种格式,以满足不同的分析需求。掌握这些函数的使用,将大大提高我们处理和分析数据的效率。
|
3月前
|
数据可视化 数据挖掘 数据处理
R语言高级可视化技巧:使用Plotly与Shiny制作互动图表
【8月更文挑战第30天】通过使用`plotly`和`shiny`,我们可以轻松地创建高度互动的数据可视化图表。这不仅增强了图表的表现力,还提高了用户与数据的交互性,使得数据探索变得更加直观和高效。本文仅介绍了基本的使用方法,`plotly`和`shiny`还提供了更多高级功能和自定义选项,等待你去探索和发现。希望这篇文章能帮助你掌握使用`plotly`和`shiny`制作互动图表的技巧,并在你的数据分析和可视化工作中发挥更大的作用。
|
6月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
2月前
R语言基于表格文件的数据绘制具有多个系列的柱状图与直方图
【9月更文挑战第9天】在R语言中,利用`ggplot2`包可绘制多系列柱状图与直方图。首先读取数据文件`data.csv`,加载`ggplot2`包后,使用`ggplot`函数指定轴与填充颜色,并通过`geom_bar`或`geom_histogram`绘图。参数如`stat`, `position`, `alpha`等可根据需要调整,实现不同系列的图表展示。
|
2月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
3月前
|
数据采集 机器学习/深度学习 数据挖掘
R语言数据清洗:高效处理缺失值与重复数据的策略
【8月更文挑战第29天】处理缺失值和重复数据是数据清洗中的基础而重要的步骤。在R语言中,我们拥有多种工具和方法来有效地应对这些问题。通过识别、删除或插补缺失值,以及删除重复数据,我们可以提高数据集的质量和可靠性,为后续的数据分析和建模工作打下坚实的基础。 需要注意的是,处理缺失值和重复数据时,我们应根据实际情况和数据特性选择合适的方法,并在处理过程中保持谨慎,以避免引入新的偏差或错误。
|
3月前
|
数据可视化
R语言可视化设计原则:打造吸引力十足的数据可视化
【8月更文挑战第30天】R语言可视化设计是一个综合性的过程,需要综合运用多个设计原则来创作出吸引力十足的作品。通过明确目标、选择合适的图表类型、合理运用色彩与视觉层次、明确标注与引导视线以及引入互动性与动态效果等原则的应用,你可以显著提升你的数据可视化作品的吸引力和实用性。希望本文能为你提供一些有益的启示和帮助。
|
3月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。