【数据结构】二叉树-堆(top-k问题,堆排序,时间复杂度)

简介: 【数据结构】二叉树-堆(top-k问题,堆排序,时间复杂度)

 


堆排序


第一种


假如左右子树都是小堆,我们只需要进行向下调整建堆即可。


下方是建大堆:


思路分析:这里的向上和向下调整都是建大堆的。如果我们想进行升序排序,我们就得先建大堆。因为小堆的同一层中,无法进行比较。 接着,交换根结点和最后一个结点,这时就已经将最大的数排在末尾了。然后再从根结点向下调整建大堆,这时第二大的数就排在了根结点,再swap进行交换。end--表示不再对已排好的数进行操作。如此循环,即可进行升序。



总结:如果是升序,就要建大堆。如果是降序,就要建小堆。 堆排序的本质是选择排序。


       建堆的时间复杂度:N*logN


       选数的时间复杂度:(N-1)*logN


第二种


当左右子树不一定都是小堆时,我们就要进行从下往上的向下调整建堆。


方法:从倒数第一个非叶子开始(即最后一个节点的父亲)。9,2,8,5不用调,我们从1开始,1和9满足小堆。接着往前一位数到2,此时也满足小堆。继续往前到6,1和5比,1更小,所以1和6交换。接着来到4,交换后的1和2,1更小,4就和1交换


此方法的时间复杂度是O(N),并且此方式只需要一个向下调整,不需要多写一个向上调整函数。



建小堆时,我们就会得到降序的数据。



TOP-K问题

TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。

比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。

对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:

1.用数据集合中前K个元素来建堆


  • 前k个最大的元素,则建小堆
  • 前k个最小的元素,则建大堆


2.用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素

将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。


举例如下:


 


我们先生成一千万个随机数。


topk函数如下:


void PrintTopK(const char* file, int k)
{
  FILE* fout = fopen(file, "r");
  if (fout == NULL)
  {
  perror("fopen fail");
  return;
  }
  //建一个k个数的小堆
  int* minheap = (int*)malloc(sizeof(int) * k);
  if (minheap == NULL)
  {
  perror("malloc fail");
  return;
  }
  //读取前k个,建小堆
  for (int i = 0; i < k;i++)
  {
  fscanf(fout, "%d", &minheap[i]);
  AdjustUp(minheap, i);
  }
  int x = 0;
  while (fscanf(fout, "%d", &x) != EOF)
  {
  if (x > minheap[0])
  {
    minheap[0] = x;
    AdjustDown(minheap, k, 0);
  }
  }
  for (int i = 0; i < k; i++)
  {
  printf("%d ", minheap[i]);
  }
  printf("\n");
  fclose(fout);
}

我们先建立k个数的小堆,并将前k个数放进去。接着从第k+1开始的数开始与根结点比较,如果大于,就替换,然后进行向下调整,恢复成堆的形式。直到所有的数都比较完,我们就能找出前k个最大或最小的数了。


最后的运行结果如下:

 


建堆的时间复杂度

向下调整建堆的时间复杂度:



这里举例向下调整建堆的时间复杂度:


因为第h层是叶,就不需要向下移动了。具体计算过程如下图,因为是等差*等比,所以采用错位相减法进行计算。




因为最后的结果中的h是树的高度,不方便看出时间复杂度,替换成N(节点的个数)



最终,时间复杂度是O(N)。


向上调整建堆的时间复杂度:





上方是求向上调整建堆时间复杂度的计算过程,原理与向下调整的一样。


最终的时间复杂度是:O(N*logN)


补充


上方的过程的时间复杂度是O(N*logN),他跟上方的向上调整建堆相似,都是多*多,少*少的关系。因为最后一层有2^(h-1)个节点,每次交换后,最坏情况要向下调整(h-1)层,即多*多。第1层有一个节点,向下调整0层,即少*少。

目录
相关文章
|
13天前
|
存储 算法 Java
散列表的数据结构以及对象在JVM堆中的存储过程
本文介绍了散列表的基本概念及其在JVM中的应用,详细讲解了散列表的结构、对象存储过程、Hashtable的扩容机制及与HashMap的区别。通过实例和图解,帮助读者理解散列表的工作原理和优化策略。
28 1
散列表的数据结构以及对象在JVM堆中的存储过程
|
15天前
|
存储 搜索推荐 算法
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
57 16
|
15天前
|
C语言
【数据结构】二叉树(c语言)(附源码)
本文介绍了如何使用链式结构实现二叉树的基本功能,包括前序、中序、后序和层序遍历,统计节点个数和树的高度,查找节点,判断是否为完全二叉树,以及销毁二叉树。通过手动创建一棵二叉树,详细讲解了每个功能的实现方法和代码示例,帮助读者深入理解递归和数据结构的应用。
65 8
|
1月前
|
存储 JavaScript 前端开发
为什么基础数据类型存放在栈中,而引用数据类型存放在堆中?
为什么基础数据类型存放在栈中,而引用数据类型存放在堆中?
68 1
|
1月前
|
存储 算法
探索数据结构:分支的世界之二叉树与堆
探索数据结构:分支的世界之二叉树与堆
|
16天前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
91 9
|
7天前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
15 1
|
10天前
|
存储 算法 Java
数据结构的栈
栈作为一种简单而高效的数据结构,在计算机科学和软件开发中有着广泛的应用。通过合理地使用栈,可以有效地解决许多与数据存储和操作相关的问题。
|
13天前
|
存储 JavaScript 前端开发
执行上下文和执行栈
执行上下文是JavaScript运行代码时的环境,每个执行上下文都有自己的变量对象、作用域链和this值。执行栈用于管理函数调用,每当调用一个函数,就会在栈中添加一个新的执行上下文。
|
15天前
|
存储
系统调用处理程序在内核栈中保存了哪些上下文信息?
【10月更文挑战第29天】系统调用处理程序在内核栈中保存的这些上下文信息对于保证系统调用的正确执行和用户程序的正常恢复至关重要。通过准确地保存和恢复这些信息,操作系统能够实现用户模式和内核模式之间的无缝切换,为用户程序提供稳定、可靠的系统服务。
42 4