【大模型】描述一些评估 LLM 性能的技术

简介: 【5月更文挑战第5天】【大模型】描述一些评估 LLM 性能的技术

image.png

评估LLM性能的技术

在评估大语言模型(LLM)的性能时,需要使用一系列的评估指标和技术来衡量模型的表现。这些评估技术包括传统的语言模型评估指标,以及针对特定任务和应用场景设计的评估方法。下面我们将详细分析一些评估LLM性能的技术。

困惑度(Perplexity)

困惑度是评估语言模型性能的一种常用指标,用于衡量模型对输入序列的预测能力。困惑度越低表示模型对输入序列的预测越准确,模型的性能越好。困惑度的计算公式为:

[ \text{Perplexity} = 2^{-\frac{1}{N}\sum_{i=1}^{N} \log P(w_i | w_1, w2, ..., w{i-1})} ]

其中 (N) 表示输入序列的长度,(P(w_i | w_1, w2, ..., w{i-1})) 表示模型对下一个词 (w_i) 的预测概率。

BLEU分数

BLEU(Bilingual Evaluation Understudy)是一种用于评估机器翻译性能的指标,也常用于评估语言生成任务中的性能。BLEU分数通过比较生成文本与参考文本之间的匹配程度来衡量模型的性能。BLEU分数的计算基于n-gram精确度和短语匹配率,可以使用多个参考文本进行计算。

ROUGE指标

ROUGE(Recall-Oriented Understudy for Gisting Evaluation)是一组用于评估文本摘要质量的指标,常用于评估生成式对话系统等任务的性能。ROUGE指标包括ROUGE-N(考虑n-gram匹配)、ROUGE-L(考虑最长公共子序列)、ROUGE-W(考虑窗口匹配)等,用于衡量生成文本与参考文本之间的重叠程度和相似性。

人类评估

除了自动评估指标外,人类评估也是评估LLM性能的重要手段之一。人类评估可以通过专家评审、用户调查等方式进行,主要用于评估生成文本的语义准确性、流畅性、可读性等方面。人类评估可以提供直观和全面的评估结果,帮助发现模型存在的问题和改进的方向。

多样性评估

多样性评估用于评估模型生成的文本在内容和风格上的多样性。多样性评估可以通过计算生成文本的词汇丰富度、句子结构多样性等指标来进行,也可以通过人类评估来衡量文本的多样性和创新性。

一致性评估

一致性评估用于评估模型生成的文本在逻辑和连贯性上的一致性。一致性评估可以通过检查生成文本的逻辑关系、上下文连贯性等方面来进行,也可以通过人类评估来判断文本的一致性和合理性。

对抗性评估

对抗性评估用于评估模型在面对对抗性样本时的性能和鲁棒性。对抗性评估可以通过设计对抗性样本来测试模型的抗干扰能力,也可以通过模拟真实场景下的恶意攻击来评估模型的安全性和可靠性。

多任务评估

多任务评估用于评估模型在多个任务上的性能和泛化能力。多任务评估可以通过设计多个任务和数据集来测试模型的通用性和适应性,也可以通过在不同任务上进行交叉验证来评估模型的稳定性和一致性。

总结

综上所述,评估LLM性能的技术包括困惑度、BLEU分数、ROUGE指标、人类评估、多样性评估、一致性评估、对抗性评估和多任务评估等多种方法。这些评估技术可以综合考虑模型的语言生成能力、内容质量、逻辑连贯性、鲁棒性和通用性等方面的性能,帮助人们更好地理解和评价LLM的表现。

相关文章
|
14天前
|
前端开发 机器人 API
前端大模型入门(一):用 js+langchain 构建基于 LLM 的应用
本文介绍了大语言模型(LLM)的HTTP API流式调用机制及其在前端的实现方法。通过流式调用,服务器可以逐步发送生成的文本内容,前端则实时处理并展示这些数据块,从而提升用户体验和实时性。文章详细讲解了如何使用`fetch`发起流式请求、处理响应流数据、逐步更新界面、处理中断和错误,以及优化用户交互。流式调用特别适用于聊天机器人、搜索建议等应用场景,能够显著减少用户的等待时间,增强交互性。
109 2
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
LLM群体智能崛起,数学性能暴增11.6%!谷歌DeepMind四大机构联手新作
【10月更文挑战第17天】近日,谷歌、DeepMind等四大机构联合发布论文,展示大型语言模型(LLMs)在数学问题解决上的显著进步。通过引入元认知知识,研究人员开发了提示引导的交互程序,使LLMs能为数学问题分配合理技能标签并进行语义聚类。实验结果显示,GPT-4在GSM8K和MATH数据集上的准确性分别提升了11.6%和7.52%,展现出巨大潜力。这一成果不仅为AI领域提供了新思路,也为数学教育带来了启示。
25 4
|
8天前
|
机器学习/深度学习 人工智能 运维
企业内训|LLM大模型在服务器和IT网络运维中的应用-某日企IT运维部门
本课程是为某在华日资企业集团的IT运维部门专门定制开发的企业培训课程,本课程旨在深入探讨大型语言模型(LLM)在服务器及IT网络运维中的应用,结合当前技术趋势与行业需求,帮助学员掌握LLM如何为运维工作赋能。通过系统的理论讲解与实践操作,学员将了解LLM的基本知识、模型架构及其在实际运维场景中的应用,如日志分析、故障诊断、网络安全与性能优化等。
28 2
|
12天前
|
机器学习/深度学习 数据采集 人工智能
文档智能 & RAG 让AI大模型更懂业务 —— 阿里云LLM知识库解决方案评测
随着数字化转型的深入,企业对文档管理和知识提取的需求日益增长。阿里云推出的文档智能 & RAG(Retrieval-Augmented Generation)解决方案,通过高效的内容清洗、向量化处理、精准的问答召回和灵活的Prompt设计,帮助企业构建强大的LLM知识库,显著提升企业级文档管理的效率和准确性。
|
4天前
|
机器学习/深度学习 自然语言处理 数据格式
社区供稿 |【8卡从零训练Steel-LLM】微调探索与评估
本篇文章主要介绍下微调上的探索以及评估。另外,还特意试了试训练CMMLU数据集,能在榜单上提多少分
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
LLM群体智能崛起,数学性能暴增11.6%!谷歌DeepMind四大机构联手新作
【10月更文挑战第16天】最新研究显示,大型语言模型(LLMs)在数学问题解决上取得显著进展。谷歌、DeepMind等机构的研究人员通过引入元认知知识,使LLMs能更好地理解和解决数学问题,其在GSM8K和MATH数据集上的准确率分别提升了11.6%和7.52%。这一成果不仅为AI领域开辟了新路径,也为数学教育带来了新的可能性。
28 3
|
14天前
|
人工智能 自然语言处理 运维
前端大模型应用笔记(一):两个指令反过来说大模型就理解不了啦?或许该让第三者插足啦 -通过引入中间LLM预处理用户输入以提高多任务处理能力
本文探讨了在多任务处理场景下,自然语言指令解析的困境及解决方案。通过增加一个LLM解析层,将复杂的指令拆解为多个明确的步骤,明确操作类型与对象识别,处理任务依赖关系,并将自然语言转化为具体的工具命令,从而提高指令解析的准确性和执行效率。
|
12天前
|
存储 机器学习/深度学习 人工智能
文档智能与RAG技术在LLM中的应用评测
本文介绍了阿里云在大型语言模型(LLM)中应用文档智能与检索增强生成(RAG)技术的解决方案,通过文档预处理、知识库构建、高效检索和生成模块,显著提升了LLM的知识获取和推理能力,尤其在法律、医疗等专业领域表现突出。
36 1
|
13天前
|
人工智能 前端开发
大模型体验体验报告:OpenAI-O1内置思维链和多个llm组合出的COT有啥区别?传统道家理论+中学生物理奥赛题测试,名不虚传还是名副其实?
一个月前,o1发布时,虽然让人提前体验,但自己并未进行测试。近期终于有机会使用,却仍忘记第一时间测试。本文通过两个测试案例展示了o1的强大能力:一是关于丹田及练气的详细解答,二是解决一道复杂的中学生物理奥赛题。o1的知识面广泛、推理迅速,令人印象深刻。未来,或许可以通过赋予o1更多能力,使其在更多领域发挥作用。如果你有好的测试题,欢迎留言,一起探索o1的潜力。
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
前端大模型入门(三):编码(Tokenizer)和嵌入(Embedding)解析 - llm的输入
本文介绍了大规模语言模型(LLM)中的两个核心概念:Tokenizer和Embedding。Tokenizer将文本转换为模型可处理的数字ID,而Embedding则将这些ID转化为能捕捉语义关系的稠密向量。文章通过具体示例和代码展示了两者的实现方法,帮助读者理解其基本原理和应用场景。