【大模型】在大语言模型的架构中,Transformer有何作用?

简介: 【5月更文挑战第5天】【大模型】在大语言模型的架构中,Transformer有何作用?

image.png

Transformer在大语言模型架构中的作用

Transformer是一种用于序列到序列(Seq2Seq)任务的深度学习模型,由Vaswani等人于2017年提出。在大语言模型(LLM)的架构中,Transformer扮演着关键的角色,它作为模型的核心组件,负责处理文本序列的建模和处理。下面我们将详细分析Transformer在LLM架构中的作用。

自注意力机制

Transformer中的自注意力机制是其最重要的组成部分之一,它使得模型能够在输入序列内部进行全局的关联建模。自注意力机制允许模型根据序列中的每个位置与其他位置的关系动态地调整每个位置的表示。这种机制使得模型能够更好地捕捉到文本序列中不同位置之间的长距离依赖关系,从而提高了模型对语义信息的理解能力。

编码器和解码器

在Transformer中,编码器和解码器是由多层的自注意力层和前馈神经网络层组成的。编码器负责将输入文本序列转换为一系列抽象的语义表示,而解码器则负责将这些语义表示转换为目标文本序列。编码器和解码器之间通过注意力机制进行交互,使得模型能够在不同层次上对输入和输出之间的关系进行建模。

位置编码

由于Transformer不包含循环神经网络或卷积神经网络中的位置信息,因此需要引入位置编码来表示输入文本序列中的位置信息。位置编码通常是一个固定的矩阵,其中每行对应于输入序列中的一个位置,并且在模型的训练过程中是可学习的。位置编码使得模型能够将输入文本序列中的位置信息与内容信息相结合,从而更好地理解文本序列的语义和结构。

多头注意力机制

Transformer中的多头注意力机制允许模型在不同的表示空间中学习多个注意力权重,并将它们组合起来以获得更丰富和更复杂的语义表示。多头注意力机制可以使模型在不同层次和不同方向上对输入序列进行建模,从而提高了模型的表达能力和泛化能力。

前馈神经网络

除了自注意力层之外,Transformer还包含前馈神经网络层,用于对每个位置的表示进行非线性变换和映射。前馈神经网络通常是一个全连接的多层感知器网络,其作用是对输入向量进行线性变换和非线性变换,从而使得模型能够更好地学习输入序列的高阶特征和抽象表示。

残差连接和层归一化

为了避免深度神经网络中的梯度消失和梯度爆炸问题,Transformer中引入了残差连接和层归一化机制。残差连接允许模型在每个层之间添加一个跳跃连接,使得模型能够更轻松地学习到输入序列中的特征。层归一化机制则可以保持模型在训练过程中的稳定性和收敛性,从而提高了模型的训练效率和泛化能力。

总结

综上所述,Transformer在大语言模型(LLM)的架构中扮演着关键的角色,其自注意力机制、编码器和解码器、位置编码、多头注意力机制、前馈神经网络、残差连接和层归一化等组件都对模型的性能和能力起着重要的影响。通过合理设计和优化这些组件,可以使得LLM能够更好地理解和生成自然语言,从而在各种自然语言处理任务中取得优异的性能和效果。

相关文章
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
一文介绍CNN/RNN/GAN/Transformer等架构 !!
一文介绍CNN/RNN/GAN/Transformer等架构 !!
24 4
|
3天前
|
机器学习/深度学习 自然语言处理 并行计算
一文搞懂Transformer架构的三种注意力机制
一文搞懂Transformer架构的三种注意力机制
33 1
|
3天前
|
存储 缓存 分布式计算
You Only Cache Once:YOCO 基于Decoder-Decoder 的一个新的大语言模型架构
YOCO是一种新的解码器-解码器架构,旨在解决大型语言模型推理时的内存限制问题。通过只缓存一次键值对,YOCO显著减少了GPU内存占用,与Transformer相比,内存使用降低了约L倍。模型由自解码器和交叉解码器组成,自解码器使用滑动窗口注意力,而交叉解码器利用全局KV缓存。实验表明,YOCO在保持竞争力的性能同时,提高了推理速度,尤其是在处理长序列时。此外,YOCO还减少了预填充时间,提升了吞吐量。
22 3
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
【大模型】比较和对比 LLM 架构
【5月更文挑战第6天】【大模型】比较和对比 LLM 架构
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
革命新架构掀翻Transformer!无限上下文处理,2万亿token碾压Llama 2
【4月更文挑战第28天】清华大学研究团队提出了Megalodon,一种针对长序列数据优化的Transformer模型。为解决Transformer的计算复杂度和上下文限制,Megalodon采用了CEMA改进注意力机制,降低计算量和内存需求;引入时间步长归一化层增强稳定性;使用归一化注意力机制提升注意力分配;并借助预归一化与双跳残差配置加速模型收敛。在与Llama 2的对比实验中,Megalodon在70亿参数和2万亿训练token规模下展现出更优性能。论文链接:https://arxiv.org/abs/2404.08801
29 2
|
3天前
|
机器学习/深度学习 自然语言处理 并行计算
大模型开发:什么是Transformer架构及其重要性?
Transformer模型革新了NLP,以其高效的并行计算和自注意力机制解决了长距离依赖问题。从机器翻译到各种NLP任务,Transformer展现出卓越性能,其编码器-解码器结构结合自注意力层和前馈网络,实现高效训练。此架构已成为领域内重要里程碑。
48 2
|
3天前
|
机器学习/深度学习 XML 自然语言处理
Transformer 架构—Encoder-Decoder
Transformer 架构—Encoder-Decoder
103 1
|
3天前
|
机器学习/深度学习 资源调度 数据可视化
Mamba详细介绍和RNN、Transformer的架构可视化对比
Transformer体系结构已经成为大型语言模型(llm)成功的主要组成部分。为了进一步改进llm,人们正在研发可能优于Transformer体系结构的新体系结构。其中一种方法是Mamba(一种状态空间模型)。
361 2
|
3天前
|
机器学习/深度学习 人工智能
大模型架构将迎来除 Transformer 之外的突破
大模型架构将迎来除 Transformer 之外的突破
54 2
大模型架构将迎来除 Transformer 之外的突破
|
20小时前
|
监控 持续交付 开发者
构建高效微服务架构:后端开发的新范式
【5月更文挑战第18天】 随着现代软件开发的复杂性日益增长,传统的单体应用架构已难以满足快速迭代和灵活部署的需求。本文聚焦于一种新兴的解决方案——微服务架构,探讨其如何为后端开发带来革命性的改变。我们将深入分析微服务的核心概念、优势与挑战,并通过具体案例来阐述如何在实际项目中实施微服务架构。文章旨在为开发者提供一种系统化的方法,帮助他们理解并应用微服务架构,以提升系统的可维护性、扩展性和技术敏捷性。
8 2