【大模型】在大语言模型的架构中,Transformer有何作用?

简介: 【5月更文挑战第5天】【大模型】在大语言模型的架构中,Transformer有何作用?

image.png

Transformer在大语言模型架构中的作用

Transformer是一种用于序列到序列(Seq2Seq)任务的深度学习模型,由Vaswani等人于2017年提出。在大语言模型(LLM)的架构中,Transformer扮演着关键的角色,它作为模型的核心组件,负责处理文本序列的建模和处理。下面我们将详细分析Transformer在LLM架构中的作用。

自注意力机制

Transformer中的自注意力机制是其最重要的组成部分之一,它使得模型能够在输入序列内部进行全局的关联建模。自注意力机制允许模型根据序列中的每个位置与其他位置的关系动态地调整每个位置的表示。这种机制使得模型能够更好地捕捉到文本序列中不同位置之间的长距离依赖关系,从而提高了模型对语义信息的理解能力。

编码器和解码器

在Transformer中,编码器和解码器是由多层的自注意力层和前馈神经网络层组成的。编码器负责将输入文本序列转换为一系列抽象的语义表示,而解码器则负责将这些语义表示转换为目标文本序列。编码器和解码器之间通过注意力机制进行交互,使得模型能够在不同层次上对输入和输出之间的关系进行建模。

位置编码

由于Transformer不包含循环神经网络或卷积神经网络中的位置信息,因此需要引入位置编码来表示输入文本序列中的位置信息。位置编码通常是一个固定的矩阵,其中每行对应于输入序列中的一个位置,并且在模型的训练过程中是可学习的。位置编码使得模型能够将输入文本序列中的位置信息与内容信息相结合,从而更好地理解文本序列的语义和结构。

多头注意力机制

Transformer中的多头注意力机制允许模型在不同的表示空间中学习多个注意力权重,并将它们组合起来以获得更丰富和更复杂的语义表示。多头注意力机制可以使模型在不同层次和不同方向上对输入序列进行建模,从而提高了模型的表达能力和泛化能力。

前馈神经网络

除了自注意力层之外,Transformer还包含前馈神经网络层,用于对每个位置的表示进行非线性变换和映射。前馈神经网络通常是一个全连接的多层感知器网络,其作用是对输入向量进行线性变换和非线性变换,从而使得模型能够更好地学习输入序列的高阶特征和抽象表示。

残差连接和层归一化

为了避免深度神经网络中的梯度消失和梯度爆炸问题,Transformer中引入了残差连接和层归一化机制。残差连接允许模型在每个层之间添加一个跳跃连接,使得模型能够更轻松地学习到输入序列中的特征。层归一化机制则可以保持模型在训练过程中的稳定性和收敛性,从而提高了模型的训练效率和泛化能力。

总结

综上所述,Transformer在大语言模型(LLM)的架构中扮演着关键的角色,其自注意力机制、编码器和解码器、位置编码、多头注意力机制、前馈神经网络、残差连接和层归一化等组件都对模型的性能和能力起着重要的影响。通过合理设计和优化这些组件,可以使得LLM能够更好地理解和生成自然语言,从而在各种自然语言处理任务中取得优异的性能和效果。

相关文章
|
2月前
|
人工智能 测试技术 数据处理
首个Mamba+Transformer混合架构多模态大模型来了,实现单卡千图推理
【10月更文挑战第18天】《LongLLaVA: Scaling Multi-modal LLMs to 1000 Images Efficiently via Hybrid Architecture》提出了一种新型多模态大模型LongLLaVA,结合了Mamba和Transformer架构,通过系统优化实现在单张A100 80GB GPU上处理近千张图像的突破。该模型在视频理解、高分辨率图像分析和多模态智能体任务中表现出色,显著提升了计算效率。
163 64
|
28天前
|
机器学习/深度学习 自然语言处理 分布式计算
大规模语言模型与生成模型:技术原理、架构与应用
本文深入探讨了大规模语言模型(LLMs)和生成模型的技术原理、经典架构及应用。介绍了LLMs的关键特点,如海量数据训练、深层架构和自监督学习,以及常见模型如GPT、BERT和T5。同时,文章详细解析了生成模型的工作原理,包括自回归模型、自编码器和GANs,并讨论了这些模型在自然语言生成、机器翻译、对话系统和数据增强等领域的应用。最后,文章展望了未来的发展趋势,如模型压缩、跨模态生成和多语言多任务学习。
112 3
|
12天前
|
机器学习/深度学习 编解码 人工智能
超越Transformer,全面升级!MIT等华人团队发布通用时序TimeMixer++架构,8项任务全面领先
一支由麻省理工学院、香港科技大学(广州)、浙江大学和格里菲斯大学的华人研究团队,开发了名为TimeMixer++的时间序列分析模型。该模型在8项任务中超越现有技术,通过多尺度时间图像转换、双轴注意力机制和多尺度多分辨率混合等技术,实现了性能的显著提升。论文已发布于arXiv。
131 83
|
2月前
|
人工智能 前端开发 JavaScript
前端架构思考 :专注于多框架的并存可能并不是唯一的方向 — 探讨大模型时代前端的分层式微前端架构
随着前端技术的发展,微前端架构成为应对复杂大型应用的流行方案,允许多个团队使用不同技术栈并将其模块化集成。然而,这种设计在高交互性需求的应用中存在局限,如音视频处理、AI集成等。本文探讨了传统微前端架构的不足,并提出了一种新的分层式微前端架构,通过展示层与业务层的分离及基于功能的横向拆分,以更好地适应现代前端需求。
|
22天前
|
存储 人工智能 缓存
Mooncake:月之暗面Kimi联合清华等机构推出的大模型推理架构
Mooncake是由月之暗面Kimi联合清华大学等机构共同开源的大模型推理架构。该架构以KVCache为中心,通过分布式设计和资源优化,显著提升了大模型推理的吞吐量和效率,同时降低了算力开销。Mooncake在长上下文场景中表现出色,支持多种应用场景,如自然语言处理、内容推荐系统和搜索引擎等。
93 6
Mooncake:月之暗面Kimi联合清华等机构推出的大模型推理架构
|
23天前
|
人工智能 测试技术 计算机视觉
LongLLaVA:香港中文大学推出的多模态上下文混合架构大语言模型
LongLLaVA是由香港中文大学推出的多模态大型语言模型,采用混合架构,结合Mamba和Transformer模块,旨在高效处理大量图像数据。该模型能够在单个A100 80GB GPU上处理多达1000张图像,通过2D池化技术压缩图像token,显著降低计算成本,同时保留关键的空间关系信息。LongLLaVA在视频理解、高分辨率图像分析和多模态代理等应用场景中展现出卓越的性能。
44 5
LongLLaVA:香港中文大学推出的多模态上下文混合架构大语言模型
|
1月前
|
监控
SMoA: 基于稀疏混合架构的大语言模型协同优化框架
通过引入稀疏化和角色多样性,SMoA为大语言模型多代理系统的发展开辟了新的方向。
44 6
SMoA: 基于稀疏混合架构的大语言模型协同优化框架
|
1月前
|
机器学习/深度学习 自然语言处理 计算机视觉
探索深度学习中的Transformer架构
探索深度学习中的Transformer架构
41 0
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
Tokenformer:基于参数标记化的高效可扩展Transformer架构
本文是对发表于arXiv的论文 "TOKENFORMER: RETHINKING TRANSFORMER SCALING WITH TOKENIZED MODEL PARAMETERS" 的深入解读与扩展分析。主要探讨了一种革新性的Transformer架构设计方案,该方案通过参数标记化实现了模型的高效扩展和计算优化。
141 0
|
2月前
|
缓存 前端开发 JavaScript
前端架构思考:代码复用带来的隐形耦合,可能让大模型造轮子是更好的选择-从 CDN 依赖包被删导致个站打不开到数年前因11 行代码导致上千项目崩溃谈谈npm黑洞 - 统计下你的项目有多少个依赖吧!
最近,我的个人网站因免费CDN上的Vue.js包路径变更导致无法访问,引发了我对前端依赖管理的深刻反思。文章探讨了NPM依赖陷阱、开源库所有权与维护压力、NPM生态问题,并提出减少不必要的依赖、重视模块设计等建议,以提升前端项目的稳定性和可控性。通过“left_pad”事件及个人经历,强调了依赖管理的重要性和让大模型代替人造轮子的潜在收益