写在开头
今天在牛客上看到了一个帖子,一个网友吐槽美团一面上来就让手撕同步器,没整出来,结果面试直接凉凉。
就此联想到一周前写的一篇关于AQS知识点解析的博文,当时也曾埋下伏笔说后面会根据AQS的原理实现一个自定义的同步器,那今天就来把这个坑给填上哈。
常用的AQS架构同步器类
自定义同步器实现步骤
在上一篇文章中我们就已经提过了AQS是基于 模版方法模式
的,我们基于此的自定义同步器设计一般需要如下两步:
1. 使用者继承 AbstractQueuedSynchronizer 并重写指定的方法;
2. 将 AQS 组合在自定义同步组件的实现中,并调用其模板方法,而这些模板方法会调用使用者重写的方法。
在模版方法模式下,有个很重要的东西,那就是“钩子方法”
,这是一种抽象类中的方法,一般使用 protected 关键字修饰,可以给与默认实现,空方法居多,其内容逻辑由子类实现,为什么不适用抽象方法呢?因为,抽象方法需要子类全部实现,增加大量代码冗余!
Ok,有了这层理论知识,我们去看看Java中根据AQS实现的同步工具类有哪些吧
Semaphore(信号量)
在前面我们讲过的synchronized 和 ReentrantLock 都是一次只允许一个线程访问某个资源,而Semaphore(信号量)可以用来控制同时访问特定资源的线程数量,它并不能保证线程安全。
我们下面来看一个关于Semaphore的使用示例:
【代码示例1】
public class Test {
private final Semaphore semaphore;
/**
* 构造方法初始化信号量
* @param limit
*/
public Test(int limit) {
this.semaphore = new Semaphore(limit);
}
public void useResource() {
try {
semaphore.acquire();
// 使用资源
System.out.println("资源use:" + Thread.currentThread().getName());
Thread.sleep(1000); // 模拟资源使用时间
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
semaphore.release();
System.out.println("资源release:" + Thread.currentThread().getName());
}
}
public static void main(String[] args) {
// 限制3个线程同时访问资源
Test pool = new Test(3);
for (int i = 0; i < 4; i++) {
new Thread(pool::useResource).start();
}
}
}
输出:
资源use:Thread-1
资源use:Thread-0
资源use:Thread-2
资源release:Thread-0
资源release:Thread-1
资源release:Thread-2
资源use:Thread-3
资源release:Thread-3
由此结果可看出,我们成功的将同时访问共享资源的线程数限制在了不超过3个的级别,这里面涉及到了Semaphore的两个主要方法:acquire()和release()
跟进这个方法后,我们会发现其内部调用了AQS的一个final 方法acquireSharedInterruptibly(),这个方法中又调用了tryAcquireShared(arg)放,作为AQS中的钩子方法,这个方法的实现在Semaphore的两个静态内部类 FairSync(公平模式) 和 NonfairSync(非公平模式) 中。
② release():释放许可
同样跟入这个方法,里面用了AQS的releaseShared(),而在这个方法内也毫无疑问的用了tryReleaseShared(int arg)这个钩子方法,原理同上,不再冗释。
【补充】
此外,在Semaphore中还有一个Sync的内部类,提供nonfairTryAcquireShared()自旋获取资源,以及tryReleaseShared(int releases),共享方式尝试释放资源。
除了Semaphore(信号量)外,基于AQS实现的还有CountDownLatch (倒计时器)、CyclicBarrier(循环栅栏),本来想在一篇文章中讲完的,但感觉篇幅上会非常长,遂放弃,后面分篇学习吧。
## 手写一个同步器!
好了,有了上面的一系列学习,我们现在来手撕一个自定义的同步器吧,原理都一样滴,开始前,先贴上AQS中的几个钩子方法,防止待会忘记,哈哈!
【钩子方法】
//独占方式。尝试获取资源,成功则返回true,失败则返回false。
protected boolean tryAcquire(int)
//独占方式。尝试释放资源,成功则返回true,失败则返回false。
protected boolean tryRelease(int)
//共享方式。尝试获取资源。负数表示失败;0表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源。
protected int tryAcquireShared(int)
//共享方式。尝试释放资源,成功则返回true,失败则返回false。
protected boolean tryReleaseShared(int)
//该线程是否正在独占资源。只有用到condition才需要去实现它。
protected boolean isHeldExclusively()
步骤一:写一个基于AQS的互斥锁,统一时刻只允许一个线程获取资源。
首先,我们在第一步,我们定义一个互斥锁类OnlySyncByAQS,在类中我们同样写一个静态内部类去继承AbstractQueuedSynchronizer,在内部类中,我们重写AQS的tryAcquire方法,独占方式,尝试获取资源;重写tryRelease()尝试释放资源,这俩为主要方法!
然后我们再进一步封装成lock()与unlock()的上锁与解锁方法,并在里面通过模版方法模式,去调用AQS中的acquire()和release(),从而去调到我们对模版方法的实现。
【代码示例2】
public class OnlySyncByAQS {
private final Sync sync = new Sync();
/**
* 获取许可,给资源上锁
*/
public void lock() {
sync.acquire(1);
}
/**
* 释放许可,解锁
*/
public void unlock() {
sync.release(1);
}
/**
* 判断是否独占
* @return
*/
public boolean isLocked() {
return sync.isHeldExclusively();
}
/**
* 静态内部类,继承AQS,重写钩子方法
*/
private static class Sync extends AbstractQueuedSynchronizer {
/**
* 重写AQS的tryAcquire方法,独占方式,尝试获取资源。
*/
@Override
protected boolean tryAcquire(int arg) {
//CAS 尝试更改状态
if (compareAndSetState(0, 1)) {
//独占模式下,设置锁的持有者为当前线程,来自于AOS
setExclusiveOwnerThread(Thread.currentThread());
System.out.println(Thread.currentThread().getName()+"获取锁成功");
return true;
}
System.out.println(Thread.currentThread().getName()+"获取锁失败");
return false;
}
/**
* 独占方式。尝试释放资源,成功则返回true,失败则返回false。
* @param arg
* @return
*/
@Override
protected boolean tryRelease(int arg) {
if (getState() == 0) {
throw new IllegalMonitorStateException();
}
//置空锁的持有者
setExclusiveOwnerThread(null);
//改状态为0,未锁定状态
setState(0);
System.out.println(Thread.currentThread().getName()+"释放锁成功!");
return true;
}
/**
* 判断该线程是否正在独占资源,返回state=1
* @return
*/
@Override
protected boolean isHeldExclusively() {
return getState() == 1;
}
}
}
步骤二:
第二步,我们写一个测试类去调用这个自定义的互斥锁。
【代码示例2】
public class Test {
private OnlySyncByAQS onlySyncByAQS = new OnlySyncByAQS();
public void use(){
onlySyncByAQS.lock();
try {
//休眠1秒获取使用共享资源
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
onlySyncByAQS.unlock();
}
}
public static void main(String[] args) throws InterruptedException {
Test test = new Test();
//多线程竞争资源,每次仅一个线程拿到锁
for (int i = 0; i < 3; i++) {
new Thread(()->{
test.use();
}).start();
}
}
}
输出:
Thread-0获取锁成功
Thread-1获取锁失败
Thread-2获取锁失败
Thread-1获取锁失败
Thread-1获取锁失败
Thread-0释放锁成功!
Thread-1获取锁成功
Thread-1释放锁成功!
Thread-2获取锁成功
Thread-2释放锁成功!
由输出结果可以看出作为互斥锁,每次仅一个线程可以获取到锁资源,其他线程会不断尝试获取并失败,直至该线程释放锁资源!
结尾彩蛋
如果本篇博客对您有一定的帮助,大家记得留言+点赞+收藏呀。原创不易,转载请联系Build哥!