超越Sora极限,120秒超长AI视频模型诞生!

简介: 【5月更文挑战第1天】 StreamingT2V技术突破AI视频生成界限,实现120秒超长连贯视频,超越Sora等传统模型。采用自回归方法,结合短期记忆的条件注意模块和长期记忆的外观保持模块,保证内容连贯性和动态性。在实际应用中,展示出优秀的动态性、连贯性和图像质量,但仍有优化空间,如处理复杂场景变化和连续性问题。[链接](https://arxiv.org/abs/2403.14773)

随着人工智能技术的飞速发展,AI视频生成领域迎来了一次重大突破。最近,一项名为StreamingT2V的新技术引起了广泛关注,它成功地将文本描述转化为长达120秒的连贯视频内容,这一成就不仅超越了以往的技术限制,更为未来的多媒体创作和内容生产打开了新的可能性。

传统的文本到视频的转换模型,如Sora等,虽然能够根据文本指令生成高质量的短视频,但往往受限于视频长度和动态复杂性。这些模型在尝试生成更长视频时,常常出现场景转换不自然、画面停滞等问题。而StreamingT2V的出现,正是为了解决这些长期困扰研究者的问题。

StreamingT2V的核心在于其自回归的方法论,它通过短期记忆模块——条件注意模块(CAM)和长期记忆模块——外观保持模块(APM),以及一种随机混合方法,确保了视频内容的连贯性和动态性。CAM通过注意力机制,利用前一视频块的特征信息,生成新的内容,而APM则从初始帧提取高层次的场景和对象特征,确保在视频生成过程中保持对象和场景的一致性。此外,随机混合方法的应用,使得视频增强过程在自回归过程中不会出现时间上的不一致性。

在实际测试中,StreamingT2V展现了其卓越的性能。它不仅能够生成具有丰富动态和高帧级图像质量的长视频,而且在与现有技术的比较中,无论是在视频的连贯性、文本对齐还是每帧质量上,都显示出明显的优势。尤其是在动态性方面,StreamingT2V能够生成高运动量的视频,而其他方法则容易出现视频停滞。

然而,尽管StreamingT2V取得了显著的成果,但仍有一些挑战和局限性需要克服。例如,尽管APM模块在保持场景和对象特征方面表现出色,但在处理更复杂的场景和对象变化时,可能仍需要进一步的优化。此外,随机混合方法虽然有效,但在处理连续性要求更高的视频内容时,可能需要更精细的调整。

论文地址:https://arxiv.org/abs/2403.14773

目录
相关文章
|
1天前
|
人工智能
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
AniDoc 是一款基于视频扩散模型的 2D 动画上色 AI 模型,能够自动将草图序列转换为彩色动画。该模型通过对应匹配技术和背景增强策略,实现了色彩和风格的准确传递,适用于动画制作、游戏开发和数字艺术创作等多个领域。
30 16
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
|
11天前
|
人工智能 自然语言处理 前端开发
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
Director 是一个构建视频智能体的 AI 框架,用户可以通过自然语言命令执行复杂的视频任务,如搜索、编辑、合成和生成视频内容。该框架基于 VideoDB 的“视频即数据”基础设施,集成了多个预构建的视频代理和 AI API,支持高度定制化,适用于开发者和创作者。
74 9
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
|
11天前
|
人工智能 安全 测试技术
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
EXAONE 3.5 是 LG AI 研究院推出的开源 AI 模型,擅长长文本处理,能够有效降低模型幻觉问题。该模型提供 24 亿、78 亿和 320 亿参数的三个版本,支持多步推理和检索增强生成技术,适用于多种应用场景。
62 9
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
|
13天前
|
机器学习/深度学习 人工智能
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
SNOOPI是一个创新的AI文本到图像生成框架,通过增强单步扩散模型的指导,显著提升模型性能和控制力。该框架包括PG-SB和NASA两种技术,分别用于增强训练稳定性和整合负面提示。SNOOPI在多个评估指标上超越基线模型,尤其在HPSv2得分达到31.08,成为单步扩散模型的新标杆。
55 10
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
|
13天前
|
人工智能 搜索推荐 开发者
Aurora:xAI 为 Grok AI 推出新的图像生成模型,xAI Premium 用户可无限制访问
Aurora是xAI为Grok AI助手推出的新图像生成模型,专注于生成高逼真度的图像,特别是在人物和风景图像方面。该模型支持文本到图像的生成,并能处理包括公共人物和版权形象在内的多种图像生成请求。Aurora的可用性因用户等级而异,免费用户每天能生成三张图像,而Premium用户则可享受无限制访问。
54 11
Aurora:xAI 为 Grok AI 推出新的图像生成模型,xAI Premium 用户可无限制访问
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
MMAudio:开源 AI 音频合成项目,根据视频或文本生成同步的音频
MMAudio 是一个基于多模态联合训练的高质量 AI 音频合成项目,能够根据视频内容或文本描述生成同步的音频。该项目适用于影视制作、游戏开发、虚拟现实等多种场景,提升用户体验。
53 7
MMAudio:开源 AI 音频合成项目,根据视频或文本生成同步的音频
|
12天前
|
人工智能 编解码 机器人
OpenAI又出王炸了!正式推出超强AI视频模型Sora
OpenAI正式推出AI视频生成模型Sora,可根据文本提示生成逼真视频,面向美国及其他市场ChatGPT付费用户开放。Sora Turbo支持生成长达20秒的视频及多种变体,具备模拟物理世界的新兴能力,可创建多镜头视频,提供Remix和Storyboard等创新功能。
42 4
OpenAI又出王炸了!正式推出超强AI视频模型Sora
|
14天前
|
存储 人工智能 PyTorch
【AI系统】模型转换流程
本文详细介绍了AI模型在不同框架间的转换方法,包括直接转换和规范式转换两种方式。直接转换涉及从源框架直接生成目标框架的模型文件,而规范式转换则通过一个中间标准格式(如ONNX)作为桥梁,实现模型的跨框架迁移。文中还提供了具体的转换流程和技术细节,以及模型转换工具的概览,帮助用户解决训练环境与部署环境不匹配的问题。
33 5
【AI系统】模型转换流程
|
14天前
|
机器学习/深度学习 存储 人工智能
【AI系统】模型转换基本介绍
模型转换技术旨在解决深度学习模型在不同框架间的兼容性问题,通过格式转换和图优化,将训练框架生成的模型适配到推理框架中,实现高效部署。这一过程涉及模型格式转换、计算图优化、算子统一及输入输出支持等多个环节,确保模型能在特定硬件上快速、准确地运行。推理引擎作为核心组件,通过优化阶段和运行阶段,实现模型的加载、优化和高效执行。面对不同框架的模型文件格式和网络结构,推理引擎需具备高度的灵活性和兼容性,以支持多样化的应用场景。
37 4
【AI系统】模型转换基本介绍
|
5天前
|
人工智能 小程序 API
【一步步开发AI运动小程序】十七、如何识别用户上传视频中的人体、运动、动作、姿态?
【云智AI运动识别小程序插件】提供人体、运动、姿态检测的AI能力,支持本地原生识别,无需后台服务,具有速度快、体验好、易集成等优点。本文介绍如何使用该插件实现用户上传视频的运动识别,包括视频解码抽帧和人体识别的实现方法。
下一篇
DataWorks