【Python 机器学习专栏】K-means 聚类算法在 Python 中的实现

简介: 【4月更文挑战第30天】K-means 是一种常见的聚类算法,用于将数据集划分为 K 个簇。其基本流程包括初始化簇中心、分配数据点、更新簇中心并重复此过程直到收敛。在 Python 中实现 K-means 包括数据准备、定义距离函数、初始化、迭代和输出结果。虽然算法简单高效,但它需要预先设定 K 值,且对初始点选择敏感,可能陷入局部最优。广泛应用在市场分析、图像分割等场景。理解原理与实现对应用聚类分析至关重要。

在机器学习领域,聚类分析是一种重要的探索性数据分析方法。K-means 聚类算法是其中一种常用的聚类算法,它简单高效,在许多实际应用中都有广泛的应用。本文将详细介绍 K-means 聚类算法的原理,并展示如何在 Python 中实现该算法。

一、K-means 聚类算法的原理

K-means 聚类算法的基本思想是将数据集划分为 K 个簇,使得每个数据点都属于距离其最近的簇中心。其主要步骤如下:

  1. 初始化:随机选择 K 个数据点作为初始簇中心。
  2. 分配数据点:计算每个数据点到各个簇中心的距离,将数据点分配到距离最近的簇中心所在的簇。
  3. 更新簇中心:根据分配到各个簇的数据点,重新计算簇中心的位置。
  4. 重复步骤 2 和 3:直到簇中心的位置不再发生明显变化或达到预设的迭代次数。

二、K-means 聚类算法的实现步骤

  1. 数据准备:加载数据集并进行必要的预处理。
  2. 定义距离函数:通常使用欧几里得距离来计算数据点之间的距离。
  3. 初始化簇中心:随机选择 K 个数据点作为初始簇中心。
  4. 迭代过程:重复执行分配数据点和更新簇中心的步骤,直到满足停止条件。
  5. 输出结果:得到最终的聚类结果和簇中心。

三、在 Python 中实现 K-means 聚类算法

以下是一个简单的 K-means 聚类算法的 Python 实现示例:

import numpy as np
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt

# 生成模拟数据集
X, y = make_blobs(n_samples=500, centers=3, cluster_std=0.6, random_state=0)

# 定义 K-means 聚类算法
def kmeans_clustering(X, K):
    # 初始化簇中心
    centroids = X[np.random.choice(X.shape[0], K, replace=False), :]

    while True:
        # 分配数据点到簇
        distances = np.sqrt(((X - centroids[:, np.newaxis]) ** 2).sum(axis=2))
        labels = np.argmin(distances, axis=0)

        # 更新簇中心
        new_centroids = np.array([X[labels == i].mean(axis=0) for i in range(K)])

        # 检查簇中心是否变化
        if np.allclose(centroids, new_centroids):
            break

        centroids = new_centroids

    return labels, centroids

# 执行 K-means 聚类
K = 3
labels, centroids = kmeans_clustering(X, K)

# 可视化聚类结果
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='rainbow')
plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', s=200, c='black')
plt.show()

四、K-means 聚类算法的优缺点

  1. 优点:简单易懂,计算效率高,对大规模数据集也能较好地处理。
  2. 缺点:需要事先指定簇的数量 K,对初始簇中心敏感,可能会陷入局部最优解。

五、应用场景

K-means 聚类算法广泛应用于市场细分、客户分类、图像分割等领域。通过对数据的聚类分析,可以发现数据中的潜在模式和结构。

六、总结

K-means 聚类算法是一种经典的聚类算法,在 Python 中有多种实现方式。理解其原理和实现过程对于应用聚类分析解决实际问题具有重要意义。在实际应用中,需要根据数据特点和需求选择合适的聚类算法,并结合其他方法进行进一步的分析和处理。

希望本文能为你提供关于 K-means 聚类算法在 Python 中实现的全面认识,助力你在机器学习的探索中取得更好的成果。

相关文章
|
2月前
|
算法 搜索推荐 JavaScript
基于python智能推荐算法的全屋定制系统
本研究聚焦基于智能推荐算法的全屋定制平台网站设计,旨在解决消费者在个性化定制中面临的选择难题。通过整合Django、Vue、Python与MySQL等技术,构建集家装设计、材料推荐、家具搭配于一体的一站式智能服务平台,提升用户体验与行业数字化水平。
|
2月前
|
存储 监控 算法
监控电脑屏幕的帧数据检索 Python 语言算法
针对监控电脑屏幕场景,本文提出基于哈希表的帧数据高效检索方案。利用时间戳作键,实现O(1)级查询与去重,结合链式地址法支持多条件检索,并通过Python实现插入、查询、删除操作。测试表明,相较传统列表,检索速度提升80%以上,存储减少15%,具备高实时性与可扩展性,适用于大规模屏幕监控系统。
123 5
|
3月前
|
存储 算法 调度
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
【复现】【遗传算法】考虑储能和可再生能源消纳责任制的售电公司购售电策略(Python代码实现)
188 26
|
2月前
|
机器学习/深度学习 数据采集 人工智能
【机器学习算法篇】K-近邻算法
K近邻(KNN)是一种基于“物以类聚”思想的监督学习算法,通过计算样本间距离,选取最近K个邻居投票决定类别。支持多种距离度量,如欧式、曼哈顿、余弦相似度等,适用于分类与回归任务。结合Scikit-learn可高效实现,需合理选择K值并进行数据预处理,常用于鸢尾花分类等经典案例。(238字)
|
3月前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于D*算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于D*算法的机器人路径规划(Python代码实现)
186 0
|
3月前
|
机器学习/深度学习 算法 机器人
【机器人路径规划】基于改进型A*算法的机器人路径规划(Python代码实现)
【机器人路径规划】基于改进型A*算法的机器人路径规划(Python代码实现)
224 0
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
212 0
|
2月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
163 2
|
3月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
206 3
|
2月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
145 8

推荐镜像

更多