Python随机波动性SV模型:贝叶斯推断马尔可夫链蒙特卡洛MCMC分析英镑/美元汇率时间序列数据|数据分享

简介: Python随机波动性SV模型:贝叶斯推断马尔可夫链蒙特卡洛MCMC分析英镑/美元汇率时间序列数据|数据分享

全文链接:https://tecdat.cn/?p=33885


本文描述了帮助客户使用马尔可夫链蒙特卡洛(MCMC)方法通过贝叶斯方法估计基本的单变量随机波动模型,就像Kim等人(1998年)所做的那样点击文末“阅读原文”获取完整代码数据


定义模型以及从条件后验中抽取样本的函数的代码也在Python脚本中提供。

%matplotlib inline
from __future__ import division
......
from src import sv

来自Kim等人(1998年)的经典单变量随机波动性模型,在此之后简称KSC,如下所示:

image.png

这里,yt代表某个资产的修正后平均收益,ht为对数波动率

示例

我们将对1981年10月1日至1985年6月28日期间的英镑/美元汇率查看文末了解数据免费获取方式进行建模。

image.png

ex = pd.read_excel('es.xls')
dta = np.l......
.iloc[1:]
endg = (dta['......
ean()) * 100

准拟然估计

估计该模型参数的一种方法是Harvey等人(1994年)的“准拟然估计法”,其中将log(ε^2_t)用与均值和方差相同的高斯随机变量来近似替换。

mod_QSV = sv.QL......
())

image.png

贝叶斯估计

KSC提供了一种使用贝叶斯技术估计该模型的替代方法;他们将log(ε^2_t)用高斯混合分布近似表示,使得:

image.png

其中 st 是一个指示随机变量,定义为 P(st=i)=qi, i=1,…,K (K 是混合成分数目)。定义了 (qi,mi,v2i) 表示组成高斯分布的值如下所示。

image.png

# q_i, m_i, v_i^2
ksc_aras = np.array([......
)

在给定 stTt=1 的条件下,每个时间段的观测方程是由一个高斯噪声项定义的。

通过设置 K=7 是对 logε2t 进行很好近似的方法,Omori et al. (2007) 将其扩展到 K=10。

class TLDT(sm.t......
Model):
    """
    时变局部线性确定性趋势
  ......
        # 转换为对数平方,带有偏移量
        endog = n.logenog**2+ offset
        # 初始化基本模型
        super(TVLLDT, self)._......
tationary')
        # 设置观测方程的时变数组
        self['o......
.nobs))
        # 设置状态空间矩阵的固定分量
        self['d......
0] = 1
    def update......
7036, v_i^2)
        self['o......
rams[1]
        self['state_cov', 0, 0] = params[2]

先验分布

为了计算模型,我们需要为参数 θ 的先验分布进行特定的指定。下面的先验规范取自于 KSC。

σ2η 的先验分布

我们考虑共轭先验分布:

image.png

其中我们将 σr=5 和 Sσ=0.01×σr=0.05。

ϕ 的先验分布

定义 ϕ∗=(ϕ+1)/2,我们对 ϕ∗ 指定一个先验分布:

image.png

正如在 KSC 中讨论的那样,该先验分布在 (−1,1) 上支持随机波动性过程的平稳性。

设置 ϕ(1)=20 和 ϕ(2)=1.5 意味着 E[ϕ]=0.86。

最后:

image.png

μ 的先验分布

KSC 建议对 μ 设定一个模糊的先验分布(或者也可以稍微具有信息的先验分布,比如 μ∼N(0,10))。

从条件后验中采样

KSC 表明,在上述指定的先验条件下,我们可以按照以下方式从条件后验中采样:

采样 σ2η

条件后验分布为:

image.png

def draw_po......
or_params=(5, 0.05)):
    sigma_r, S_sigma = prior_params
    v1 = sig......
i * (states[0, :-1] - mu))**2)
    delta1 = S_sigma + tmp1 + tmp
    return ingammars(v1,scal=deta1)

采样 ϕ

我们可以应用 Metropolis 步骤:从 N(ϕ^,Vθ) 中生成一个提议值 ϕ∗

def g(phi, ......
    # 先验分布对非平稳过程给予零权重
    if np.abs(phi) >= 1:
        ret......
2) / 2 * sigma2
    tmp2 = 0.5 * np.log(1 - phi**2)
    return n......
    V_phi = sigma2 / tmp2
    proposal ......
om.uniform() else phi

采样μ̂

条件后验分布为:

image.png

def draw_pos......
 * (1 - phi)**2 + ......
)
    return norm.r......
2_mu**0.5)

采样htTt=1̂

在混合指示符(用于生成时变观测方程矩阵)和参数条件下,可以通过通常的模拟平滑器对状态进行采样。

采样stTt=1̂

每个指示变量st只能取有限个离散值(因为它是一个指示变量,表示时间t时哪个混合分布处于活动状态)。KSC表明,可以从以下概率质量函数独立地采样混合指示符:

image.png

其中fN(y∗t∣a,b)表示均值为a,方差为b的高斯随机变量在y∗t处的概率密度。

def (mod states):
    resid = od.nog[:, 0] - states[0]
    # 构建均值 (nobs x 7), 方差 (7,), 先验概率 (7,)
    means = ks_aram......
0]
    # 调整维度以便广播计算
    resid = np.repe......
[None, :], mod.nobs,
                                    axis=0)
    # 计算对数似然 (nobs x 7)
    loglikelihoods = -0.5 * ((resi......
* variances))
    # 得到(与后验(对数))成比例的值 (nobs x 7)
    posterior_kernel = log......
ilities)
    # 归一化得到实际后验概率
    tmp = logsumxp(psterir_kernl,axis=1)
    posterior_probabilitie......
d, states)
    # 从后验中抽取样本
    varaes = np.radom.niorm(ize=od.obs)
......
    sample = np.argmax(tmp, axis=1)
    return sample

MCMC

下面我们进行10,000次迭代以从后验中进行抽样。在下面展示结果时,我们将舍弃前5,000次迭代作为燃烧期,并且在剩下的5,000次迭代中,我们只保存每十次迭代的结果。然后从剩下的500次迭代中计算结果。

# 设置模型和模拟平滑器
md = TVLLT(eog)
mo.(0, sothr_stateTrue)
sim = md.siutin_sother()
# 模拟参数
nitertons = 10000
brn = 5000
tin = 10
# 存储轨迹
trae_sooted = np.eros((_iteations+ 1 mod.nobs))......
trce_sim2 = np.ers((n_iteations + 1, 1))
# 初始值 (p. 367)
trce_miing[0] = 0
[0] = 0.95
trace_sigma2[0] = 0.5
# 迭代
for s in range(1, n_teations + 1):
    # 更新模型参数
    mod.updat_ming(tace_mixing[s-1])......
    # 模拟平滑
    sim.smuate()......
    # 抽取混合指标
    trac_miing[s] = drawmixngmod states)
    
    # 抽取参数
    tra_phi[s] = (mod, sates, trace_phi[s-1], trace_mu[s-1], trace_sigma2[s-1])......

结果

下面我们给出参数的后验均值。我们还展示了相应的QMLE估计值。这些估计值与 ϕ 和 β 的后验均值相似,但是对于 ση² 的QMLE估计值约为贝叶斯方法的一半,可能表明准拟然方法的一个缺点。

# 参数的后验均值
menphi = n.men(trae_hi[burn:thin])......
print('  beta          = %.5f' % npexp(rs_LSVparams[2] / 2))

image.png

由于参数ση²控制潜在随机波动率过程的方差,低估将抑制样本中波动率过程的变化。如下图所示

fig, ax = plt.subplots(f......
ax.legend();

image.png

点击标题查阅往期内容


【视频】随机波动率SV模型原理和Python对标普SP500股票指数预测|数据分享


01

02

03

04


最后,我们可能对参数的完全条件后验分布感兴趣。以下是这些分布,以及后验均值和QMLE估计值。

fig, axes = plt.subplots(1, 3, ......
axes[0].set(title=r'$\phi$', ylim=ylim)
axes[0].legend(loc='upper left')
......
axes[2].set(title=r'$\beta$', ylim=ylim);

image.png

相关文章
|
4月前
|
缓存 Rust 算法
从混沌到秩序:Python的依赖管理工具分析
Python 的依赖管理工具一直没有标准化,主要原因包括历史发展的随意性、社区的分散性、多样化的使用场景、向后兼容性的挑战、缺乏统一治理以及生态系统的快速变化。依赖管理工具用于处理项目中的依赖关系,确保不同环境下的依赖项一致性,避免软件故障和兼容性问题。常用的 Python 依赖管理工具如 pip、venv、pip-tools、Pipenv、Poetry 等各有优缺点,选择时需根据项目需求权衡。新工具如 uv 和 Pixi 在性能和功能上有所改进,值得考虑。
140 35
|
29天前
|
数据采集 数据可视化 数据挖掘
基于Python的App流量大数据分析与可视化方案
基于Python的App流量大数据分析与可视化方案
|
4月前
|
数据采集 数据可视化 数据挖掘
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
本文探讨了金融资产波动率建模中的三种主流方法:GARCH、GJR-GARCH和HAR模型,基于SPY的实际交易数据进行实证分析。GARCH模型捕捉波动率聚类特征,GJR-GARCH引入杠杆效应,HAR整合多时间尺度波动率信息。通过Python实现模型估计与性能比较,展示了各模型在风险管理、衍生品定价等领域的应用优势。
609 66
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
|
4月前
|
并行计算 安全 Java
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
在Python开发中,GIL(全局解释器锁)一直备受关注。本文基于CPython解释器,探讨GIL的技术本质及其对程序性能的影响。GIL确保同一时刻只有一个线程执行代码,以保护内存管理的安全性,但也限制了多线程并行计算的效率。文章分析了GIL的必要性、局限性,并介绍了多进程、异步编程等替代方案。尽管Python 3.13计划移除GIL,但该特性至少要到2028年才会默认禁用,因此理解GIL仍至关重要。
312 16
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
|
4月前
|
人工智能 自然语言处理 算法
随机的暴力美学蒙特卡洛方法 | python小知识
蒙特卡洛方法是一种基于随机采样的计算算法,广泛应用于物理学、金融、工程等领域。它通过重复随机采样来解决复杂问题,尤其适用于难以用解析方法求解的情况。该方法起源于二战期间的曼哈顿计划,由斯坦尼斯拉夫·乌拉姆等人提出。核心思想是通过大量随机样本来近似真实结果,如估算π值的经典示例。蒙特卡洛树搜索(MCTS)是其高级应用,常用于游戏AI和决策优化。Python中可通过简单代码实现蒙特卡洛方法,展示其在文本生成等领域的潜力。随着计算能力提升,蒙特卡洛方法的应用范围不断扩大,成为处理不确定性和复杂系统的重要工具。
150 21
|
2月前
|
机器学习/深度学习 存储 设计模式
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化与调试技巧,涵盖profiling、caching、Cython等优化工具,以及pdb、logging、assert等调试方法。通过实战项目,如优化斐波那契数列计算和调试Web应用,帮助读者掌握这些技术,提升编程效率。附有进一步学习资源,助力读者深入学习。
|
2月前
|
人工智能 Java 数据安全/隐私保护
[oeasy]python081_ai编程最佳实践_ai辅助编程_提出要求_解决问题
本文介绍了如何利用AI辅助编程解决实际问题,以猫屎咖啡的购买为例,逐步实现将购买斤数换算成人民币金额的功能。文章强调了与AI协作时的三个要点:1) 去除无关信息,聚焦目标;2) 将复杂任务拆解为小步骤,逐步完成;3) 巩固已有成果后再推进。最终代码实现了输入验证、单位转换和价格计算,并保留两位小数。总结指出,在AI时代,人类负责明确目标、拆分任务和确认结果,AI则负责生成代码、解释含义和提供优化建议,编程不会被取代,而是会更广泛地融入各领域。
96 28
|
2月前
|
机器学习/深度学习 数据可视化 TensorFlow
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
2月前
|
Python
[oeasy]python074_ai辅助编程_水果程序_fruits_apple_banana_加法_python之禅
本文回顾了从模块导入变量和函数的方法,并通过一个求和程序实例,讲解了Python中输入处理、类型转换及异常处理的应用。重点分析了“明了胜于晦涩”(Explicit is better than implicit)的Python之禅理念,强调代码应清晰明确。最后总结了加法运算程序的实现过程,并预告后续内容将深入探讨变量类型的隐式与显式问题。附有相关资源链接供进一步学习。
50 4
|
2月前
|
设计模式 机器学习/深度学习 前端开发
Python 高级编程与实战:深入理解设计模式与软件架构
本文深入探讨了Python中的设计模式与软件架构,涵盖单例、工厂、观察者模式及MVC、微服务架构,并通过实战项目如插件系统和Web应用帮助读者掌握这些技术。文章提供了代码示例,便于理解和实践。最后推荐了进一步学习的资源,助力提升Python编程技能。

热门文章

最新文章