R语言响应面(RSM)、线性模型lm分析生产过程影响因素可视化

简介: R语言响应面(RSM)、线性模型lm分析生产过程影响因素可视化

全文链接:https://tecdat.cn/?p=33499


响应面(Response Surface Methodology,RSM)分析是一种常用的统计方法,用于研究和优化生产过程中的影响因素。通过建立数学模型来描述因素与响应之间的关系,RSM可以帮助我们识别并优化影响因素的设置,以达到最佳的生产结果点击文末“阅读原文”获取完整代码数据


在本研究中,我们将帮助客户应用R语言中的响应面分析技术来探索和优化生产过程中的关键影响因素。通过收集实验数据并建立合适的数学模型,我们将评估各个因素对于生产过程的影响,并通过优化因素水平来达到最佳的生产效果。同时,我们将针对交互作用效应进行进一步的分析,以深入理解影响因素之间的相互作用对生产结果的影响。

通过这项研究,我们期望为生产过程的优化和改进提供有价值的信息和指导。通过响应面分析方法,我们可以更好地理解和管理生产过程中的关键影响因素,并为提高生产效率、降低成本和提升产品质量做出贡献。


1、响应面分析与优化设计

试验设计与优化方法,都未能给出直观的图形,因而也不能凭直觉观察其最优化点,虽然能找出最优值,但难以直观地判别优化区域。为此响应面分析法(也称响应曲面法)应运而生。响应面分析也是一种最优化方法,它是将体系的响应作为一个或多个因素的函数,运用图形技术将这种函数关系显示出来,以供我们凭借直觉的观察来选择试验设计中的最优化条件.

显然,要构造这样的响应面并进行分析以确定最优条件或寻找最优区域,首先必须通过大量的测试验数据建立一个合适的数学模型(建模),然后再用此数学模型作图。那么我们来看看响应面分析的主要建模方法。

2、响应面建模数学方法

根据响应逼近函数形式的不同,响应面建模方法主要分为多项式回归法、神经网络法、Kriging函数法和径向基函数法等,各种方法都有一定的局限性。


实例


我们将要使用的一个实例就是:工程师有兴趣在确定在哪些条件下运作的生产过程是最大化。这两个变量可以控制的影响的生产过程:在反应时间(x1)和反应温度(x2)。工程师目前的操作条件是反应时间 35 分钟,温度 155ºF,生产率为 40%。这不可能是最佳区域,因此她拟合了一个一阶模型。

首先,拟合了一个一阶模型,以检验响应变量与温度和时间因素之间的真实函数是否接近于线性函数。


设立一个模型的回应曲面


首先收集并分析 B1 区块的数据,然后添加 B2 区块并进行新的分析。在大多数情况下,可以通过对 k 个自变量的水平进行编码来简化参数估计的计算。为了创建一个编码数据集,我们将使用以下公式:

Chemact, x1 ~(Time - 85)/5, x2 ~(Temp - 175)/5)
CR[1:7,]

image.png

coded.data(转换预测值并用编码版本替换这些变量) 在第一阶段,使用以下命令拟合一阶模型:

rsm(Yield~FO(x1,x2),data =

image.png

由于拟合度明显不足(p 值 = 0.01),因此应使用高阶模型。拟合模型没有任何特征允许我们估计响应变量的值。由于模型拟合中没有二次项或交互项,变量 x1 和 x2 不显著。因此,交互项被包含在内:

CR.rsm1.5 <- update(
summary(CR.rsm1.5)

image.png

image.png

同样,在这种情况下,拟合度的缺失是显著的,p 值 = 0.005。为了建立二阶模型,我们加入了模块 2 的数据。这可以使用 "SO(x1,x2) "来完成,其中包括二次项和交互项:

CR. Yield ~ Block + SO(x1, x2 
summary(CR.rsm2)

image.png

image.png

现在,拟合不显著(p 值 = 0.69),即二阶模型很好地拟合了数据。还可以看出,拟合模型的静止点位于(0.37; 0.33),即最大值点。

可以使用 lm 函数(线性模型)或 rsm 函数(响应面方法)来构建水平曲线和响应面。

fit.model <- rs me,Temp))
contour(fit.model, " col = inbw(40))

image.png

点击标题查阅往期内容


有限混合模型聚类FMM、广义线性回归模型GLM混合应用分析威士忌市场和研究专利申请数据


01

02

03

04


可以看出,当 x1(时间)的值接近 85 分钟和 x2(温度)的值接近 175ºF 时,响应变量的值达到最大。如上所述,我们可以更精确地找到方差分析得出的静止点,即 x1 = 86.86148 和 x2 = 176.67190。

最后是响应面图:

psp(fitodel,~Time+Temp)

image.png


相关文章
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
21天前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
40 3
|
2月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
6月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
6月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
3月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
3月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
3月前
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
68 3
|
6月前
|
数据采集 数据可视化
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)