1. OSPF 基础实验(四):Stub 区域与 NSSA 区域

简介: 1. OSPF 基础实验(四):Stub 区域与 NSSA 区域

1.4 OSPF Stub 区域与 NSSA 区域

1.4.1 实验介绍

1.4.1.1 学习目标

1. 实现 OSPF Stub 区域的配置

2. 实现 OSPF NSSA 区域的配置

3. 描述 Type-7 LSA的内容

4. 描述Type-7 LSA与Type-5LSA之间的转换过程


1.4.1.2 实验组网介绍



设备互联方式及IP地址规划如图所示,OSPF 区域规划如下:


1. R1与R3 的互联接口、R1的 Loopback0 接口属于 OSPF 区域 2


2. R3与R4 的互联接口以及它们的Loopback0接口属于 OSPF 区域 0


3. R4与R5 的互联接口属于 OSPF 区域1,R5 的 Loopback0接口不属于任何区域


4. R2 与R3 的互联接口属于OSPF 区域 3,R2 的 Loopback0接口不属于任何区域

1.4.1.3 实验背景

你是公司的网络管理员。现在公司的网络中有五台AR路由器,其中 R2、R3 和 R4 在公司总

部。R5 在公司分部,R1在公司的另外一个分部


为了减轻分部设备的压力,你设置区域1为 NSSA 区域、区域2 为Stub 区域。同时为了明确设备的Router ID,你配置设备使用固定的地址作为Router ID  

1.4.2 实验任务

1.4.2.1 任务思路


1. 设备 IP 地址配置


2. 按照规划配置 OSPF 区域


3. 检查 OSPF 配置结果,检查OSPF邻居关系状态,检查OSFP 路由表


4. 在 R2、R5 上将外部路由引入到 OSPF 中


5. 配置区域 2为 Stub 区域,观察区域2内 OSPF 路由表、LSDB 的变化


6. 配置区域 1 为 NSSA 区域,观察区域1内 OSPF路由表、LSDB的变化


7. 查看 R4 的 OSPF 路由器身份,在R4上观察Type-7 LSA向Type-5 LSA的转换

1.4.2.2 任务步骤

步骤 1、互联接口、环回口 IP 地址配置

# 配置 R1 的 GE0/0/0、Loopback 0 接口 IP 地址


# 配置 R2 的 GE0/0/2、Loopback 0 接口IP地址

# 配置 R3 的 GE0/0/1、GE0/0/2、GE0/0/3、Loopback 0 接口 IP地址


# 配置 R4 的 GE0/0/2、GE0/0/3、Loopback 0 接口IP 地址

# 配置 R5 的 GE0/0/3、Loopback 0 接口 IP 地址


# 在 R3、R5上检查互联地址连通性

步骤 2、配置多区域 OSPF  


按照规划配置 OSPF,手动指定Loopback0接口地址为OSPF Router ID,修改 Loopback0 接

口的网络类型为Broadcast

# 配置 R1


# 配置 R2

# 配置 R3


# 配置 R4

# 配置 R5


步骤 3、检查 OSPF 多区域配置结果

# 在 R3 上检查 OSPF 邻居的概要信息

# 在R5 上检查 OSPF 邻居的概要信息

从输出信息可以判断出所有设备之间的 OSPF 邻居关系状态正常

# 在 R3 上查看 OSPF 路由表

除了未激活 OSPF 的 R2 Loopback0 接口、R5 Loopback0 接口,R3已经学习到其余接口路


步骤 4、配置将外部路由引入到 OSPF 中

# 将 R5 的 Loopback0接口路由引入到 OSPF 中


# 在 R2 上配置缺省路由,且指定出接口为Loopback0接口,并将该缺省路由引入到 OSPF

中,外部路由类型设置为1,Cost 值设置为20,不携带always参数


# 在 R3 上查看引入的外部路由,并测试其连通性

步骤 5、配置区域 2 为 Stub 区域

# 在 R1 上查看 OSPF路由表


此时默认路由为 OSPF 外部路由

# 在 R1、R3 上配置区域2 为 Stub区域

此时 R1 上不存在 OSPF 外部路由,原本的 OSPF 外部路由条目0.0.0.0/0、10.0.5.0/24被一条

缺省的 OSPF 区域间路由所取代

# 查看 R1 的 OSPF LSDB

R1 上此时不存在Type-4 LSA、Type-5 LSA,去往 OSPF域外通过ABR 生成的 Type-3 LSA所

携带的缺省路由实现。同时此时前往其他区域的Type-3 LSA依旧存在。

以上验证了将一个区域配置为Stub 区域以后,ABR会阻断 Type-4 LSA、Type-5LSA向该区

域发送,并通过Type-3LSA向该区域内泛洪一条默认路由指向 ABR 自身

# 在R3 上配置区域2为Totally Stub 区域

# 再次在 R1 上查看 OSPF 路由表、LSDB


此时原本多条 OSPF 区域间路由只剩一条0.0.0.0/0缺省路由,LSDB中Type-3 LSA只剩一条

0.0.0.0。

这就验证了 Totally Stub 区域中 ABR 会阻断了 Type-3LSA、Type-4 LSA、Type-5 LSA,并生

成一条Type-3 LSA,通告一条指向自身的缺省路由。  

步骤 6、配置区域 1 为 NSSA 区域

# 查看R4 的 OSPF 路由表


此时 R5 存在一条由Type-5LSA描述的外部路由10.0.5.0/24

# 查看 R5 的 OSPF 路由表


在 R5 的 OSPF 路由表中出现的缺省路由是由Type-5LSA所描述的,该 LSA 由 R2 产生

# 在 R4、R5 上配置区域1为 NSSA 区域


# 再次查看R5 的 OSPF 路由表

此时不存在由R2发布的缺省路由,存在一条由R4发布的Type-7 LSA描述的 OSPF缺省路由

# 查看R5 LSDB


此时不存在Type-4 LSA、Type-5LSA,外部路由以Type-7 LSA ( NSSA)的形式存在。

# 查看 R4 的 OSPF 路由表

R5 所引入的外部路由10.0.5.0/24由Type-7 LSA所描述


以上验证了 NSSA 区域阻断了外部的Type-4 LSA、Type-5 LSA进入,并且 ABR会向区域内

下发一条由Type-7LSA描述的默认路由。ASBR向 NSSA 区域内下发Type-7LSA描述本区域

中引入的外部路由  

步骤 7、观察 NSSA 对 OSPF产生的影响

# 在R4 上查看 OSPF 概要信息

在 Border Router字段可以看到R4此时的身份为:AREA AS NSSA,分别代表该路由器为 ABR、ASBR 以及存在接口属于 NSSA 区域


# 在 R4 上观察 Type-7 LSA向Type-5LSA转换的过程,以10.0.5.0/24为例观察路由信息的传递过程

首先查看描述10.0.5.0/24的Type-7 LSA,其options 字段为 NP,表示该 LSA 可以被 ABR 转

化成一条Type-5 LSA

# 在 R4 上查看生成的用于描述10.0.5.0/24的Type-5 LSA



可以看到与 Type-7LSA相比,其Ls id、net mask、FA地址字段内容完全相同,adv rtr 字段值从10.0.5.5变为了10.0.4.4,说明该Type-5LSA 由R4 产生  

相关文章
|
6月前
|
存储 网络协议 算法
|
5月前
|
网络协议 网络架构
OSPF特殊区域
OSPF特殊区域
|
6月前
|
网络协议 网络架构
OSPF 单区域实验
OSPF 单区域实验
42 0
|
6月前
|
网络协议 数据库
ospf 多区域实验
ospf 多区域实验
48 0
|
网络协议 数据安全/隐私保护 网络架构
多区域的OSPF实战配置
多区域的OSPF实战配置
76 0
|
网络协议 数据库 网络架构
ospf多区域原理和配置
ospf多区域原理和配置
319 0
ospf多区域原理和配置
|
网络协议 网络架构
|
网络协议 网络架构