R语言航班延误影响预测分析:lasso、决策树、朴素贝叶斯、QDA、LDA、缺失值处理、k折交叉验证(上)

简介: R语言航班延误影响预测分析:lasso、决策树、朴素贝叶斯、QDA、LDA、缺失值处理、k折交叉验证

全文链接:http://tecdat.cn/?p=32760


航班延误是航空公司、旅客和机场管理方面都面临的一个重要问题。航班延误不仅会给旅客带来不便,还会对航空公司和机场的运营产生负面影响点击文末“阅读原文”获取完整代码数据


因此,对航班延误的影响因素进行预测分析,对于航空公司、旅客和机场管理方面都具有重要意义。

本文通过对航班数据进行分析,帮助客户使用lasso变量筛选、决策树、朴素贝叶斯、QDA、LDA等方法,对航班延误的影响因素进行预测分析。同时,本文还对缺失值进行处理,并使用k折交叉验证对模型进行评估。


数据来源和预处理


本文所使用的数据集为航班数据集。数据集中包括了航班号、起飞时间、到达时间、起飞机场、到达机场、航班延误等信息。

data=read.table("12_months_dataFinal.csv")
head(data)

image.png

image.png

image.png image.png

colnames(data)

image.png

在审查数据之后,有几个方面被认为对航班延误有影响。


1.航空公司:航空公司,尾号和航班号。

2.时间:季度、月和日。

3.操作:承运人,尾号和航班号。

4.地理:起源机场和目的地机场。

选择一些变量做个图看一下变化趋势


image.png

image.png

image.png

image.png

image.png

点击标题查阅往期内容


PYTHON链家租房数据分析:岭回归、LASSO、随机森林、XGBOOST、KERAS神经网络、KMEANS聚类、地理可视化


01

02

03

04


因变量为:ARR_DELAY


分别采用三种方法对空值进行处理

在进行数据分析之前,需要对数据进行预处理。本文采用了如下方法进行数据预处理:


(1)删除法

data1=na.omit(data)

image.png

(2)平均值补缺

data2[index,i]=mean(na.omit(data[,i]))

image.png


R语言航班延误影响预测分析:lasso、决策树、朴素贝叶斯、QDA、LDA、缺失值处理、k折交叉验证(下):https://developer.aliyun.com/article/1497040

相关文章
|
5月前
|
数据采集 机器学习/深度学习 数据挖掘
R语言数据清洗:高效处理缺失值与重复数据的策略
【8月更文挑战第29天】处理缺失值和重复数据是数据清洗中的基础而重要的步骤。在R语言中,我们拥有多种工具和方法来有效地应对这些问题。通过识别、删除或插补缺失值,以及删除重复数据,我们可以提高数据集的质量和可靠性,为后续的数据分析和建模工作打下坚实的基础。 需要注意的是,处理缺失值和重复数据时,我们应根据实际情况和数据特性选择合适的方法,并在处理过程中保持谨慎,以避免引入新的偏差或错误。
|
5月前
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
98 3
|
8月前
|
数据可视化 算法
【R语言实战】——kNN和朴素贝叶斯方法实战
【R语言实战】——kNN和朴素贝叶斯方法实战
|
8月前
|
机器学习/深度学习 数据可视化 算法
R语言神经网络与决策树的银行顾客信用评估模型对比可视化研究
R语言神经网络与决策树的银行顾客信用评估模型对比可视化研究
|
8月前
|
机器学习/深度学习 算法 数据库
数据分享|R语言用核Fisher判别方法、支持向量机、决策树与随机森林研究客户流失情况
数据分享|R语言用核Fisher判别方法、支持向量机、决策树与随机森林研究客户流失情况
|
8月前
|
机器学习/深度学习 数据采集 数据可视化
R语言SVM、决策树与因子分析对城市空气质量分类与影响因素可视化研究
R语言SVM、决策树与因子分析对城市空气质量分类与影响因素可视化研究
|
8月前
R语言中缺失值的处理
R语言中缺失值的处理
45 0
|
8月前
|
机器学习/深度学习 数据采集 算法
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分析分类预测房价及交叉验证|数据分享
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分析分类预测房价及交叉验证|数据分享
|
8月前
|
机器学习/深度学习 数据可视化
R语言lasso协变量改进Logistic逻辑回归对特发性黄斑前膜因素交叉验证可视化分析
R语言lasso协变量改进Logistic逻辑回归对特发性黄斑前膜因素交叉验证可视化分析
|
4月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。