R语言SVR支持向量机多元回归、网格搜索超参数优化预测猪粮比价格变动率数据

简介: R语言SVR支持向量机多元回归、网格搜索超参数优化预测猪粮比价格变动率数据

我们需要拟合支持向量机回归模型:进行网格搜索超参数优化并使用训练好的模型进行预测推理、使用plot函数可视化线图对比预测值和实际值。


数据



读取数据


Hd=read.xlsx("支持向量机用数据.xlsx")#读取支持向量机用数据.xlsx
head(Hd)#查看数据


数据预处理


#归一化  
Hd=scale(Hd[,-1])
#查看变量之间的关系  
plot(Hd[,c("猪粮比价格变动率","玉米价格变动率(时差已调整)",  
           "存栏量变动率(时差已调整)",


查看变量之间的关联系数


cor(Hd[,c("猪粮比价格变动率","玉米价格变动率(时差已调整)",


点击标题查阅往期内容


R语言进行支持向量机回归SVR和网格搜索超参数优化


01

02

03

04

准备训练集和测试集


n=nrow(Hd)
ntrain <- round(n*0.8) # 训练集
tindex <- sample(n,ntrain) # 筛选测试集样本


训练集可视化


plot(Hd[,c("猪粮比价格变动率","玉米价格变动率(时差已调整)")] ,pch=ifelse


训练SVM模型


现在我们在训练集上使用来训练线性SVM

model <- svm(猪粮比价格变动率 ~ . , Hd)

mse <- function(error)  
{  
  sqrt(mean(error^2))
  
  
  predictionmse
## [1] 0.6789526


求解最优参数


predictionmse=0  
jj=1  
for(i in seq(0,1,0.1)){  
  for(j in seq(0.1,1,0.1)){  
     
    model <- svm(Hd$"猪粮比价格变动率" ~ .


找到最佳参数


which.min(predictionmse)
## [1] 10


用最优参数预测


,epsilon=1,cost=0.1)
points(Hd$"玉米价格变动率.时差已调整.", predictedY, col = "red", pch=4)


预测新数据


plot(Hd_predict[,c(3,2)] ,pch=ifelse(istrain==1,1,2))  
  
   
points(Hd_predict$"玉米价格变动率.时差已调整.", predictednew, col = "red", pch=4)

相关文章
|
4月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
5月前
|
存储 数据采集 数据处理
R语言数据变换:使用tidyr包进行高效数据整形的探索
【8月更文挑战第29天】`tidyr`包为R语言的数据整形提供了强大的工具。通过`pivot_longer()`、`pivot_wider()`、`separate()`和`unite()`等函数,我们可以轻松地将数据从一种格式转换为另一种格式,以满足不同的分析需求。掌握这些函数的使用,将大大提高我们处理和分析数据的效率。
|
4月前
R语言基于表格文件的数据绘制具有多个系列的柱状图与直方图
【9月更文挑战第9天】在R语言中,利用`ggplot2`包可绘制多系列柱状图与直方图。首先读取数据文件`data.csv`,加载`ggplot2`包后,使用`ggplot`函数指定轴与填充颜色,并通过`geom_bar`或`geom_histogram`绘图。参数如`stat`, `position`, `alpha`等可根据需要调整,实现不同系列的图表展示。
|
4月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
4月前
|
机器学习/深度学习 算法
R语言超参数调优:深入探索网格搜索与随机搜索
【9月更文挑战第2天】网格搜索和随机搜索是R语言中常用的超参数调优方法。网格搜索通过系统地遍历超参数空间来寻找最优解,适用于超参数空间较小的情况;而随机搜索则通过随机采样超参数空间来寻找接近最优的解,适用于超参数空间较大或计算资源有限的情况。在实际应用中,可以根据具体情况选择适合的方法,并结合交叉验证等技术来进一步提高模型性能。
|
5月前
|
数据采集 机器学习/深度学习 数据挖掘
R语言数据清洗:高效处理缺失值与重复数据的策略
【8月更文挑战第29天】处理缺失值和重复数据是数据清洗中的基础而重要的步骤。在R语言中,我们拥有多种工具和方法来有效地应对这些问题。通过识别、删除或插补缺失值,以及删除重复数据,我们可以提高数据集的质量和可靠性,为后续的数据分析和建模工作打下坚实的基础。 需要注意的是,处理缺失值和重复数据时,我们应根据实际情况和数据特性选择合适的方法,并在处理过程中保持谨慎,以避免引入新的偏差或错误。
|
5月前
|
数据处理
R语言数据合并:掌握`merge`与`dplyr`中`join`的巧妙技巧
【8月更文挑战第29天】如果你已经在使用`dplyr`进行数据处理,那么推荐使用`dplyr::join`进行数据合并,因为它与`dplyr`的其他函数(如`filter()`、`select()`、`mutate()`等)无缝集成,能够提供更加流畅和一致的数据处理体验。如果你的代码中尚未使用`dplyr`,但想要尝试,那么`dplyr::join`将是一个很好的起点。
|
5月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
5月前
|
SQL 数据挖掘 数据处理
R语言数据操作:使用dplyr进行数据处理的深度探索
【8月更文挑战第27天】`dplyr`包以其简洁、强大的数据处理能力,在R语言的数据分析领域占据了重要地位。通过`select()`、`filter()`、`arrange()`、`mutate()`和`summarise()`等核心函数,结合管道操作符`%>%`,我们可以轻松地完成数据筛选、排序、变换和汇总等操作。掌握`dplyr`的使用,将极大地提高我们在R语言中进行
|
6月前
|
机器学习/深度学习 算法 数据挖掘
R语言在金融分析中扮演重要角色,用于风险管理、资产定价、量化交易、市场预测和投资组合优化。
【7月更文挑战第2天】R语言在金融分析中扮演重要角色,用于风险管理、资产定价、量化交易、市场预测和投资组合优化。其开源、强大的统计功能和丰富的包(如`PerformanceAnalytics`、`quantstrat`、`forecast`)支持从风险评估到策略回测的各种任务。R的灵活性和社区支持使其成为金融专业人士应对复杂问题的首选工具。
282 1