数据分享|SAS与eviews用ARIMA模型对我国大豆产量时间序列预测、稳定性、白噪声检验可视化

简介: 数据分享|SAS与eviews用ARIMA模型对我国大豆产量时间序列预测、稳定性、白噪声检验可视化

全文链接:http://tecdat.cn/?p=31480


我国以前一直以来都是世界上大豆生产的第一大国。但由于各国的日益强大,导致我国豆种植面积和产量持续缩减。因此,预测我国的大豆产量对中国未来的经济发展有着极其重要的作用点击文末“阅读原文”获取完整代码数据


我们为一位客户进行了短暂的咨询工作,他正在构建一个主要基于ARIMA的大豆产量预测应用程序,运用SAS与eviews软件对全国1957年到2009年大豆产量的历史数据查看文末了解数据免费获取方式建立时间序列ARIMA模型,通过判断其稳定性与是否通过白噪声检验,建立AR(2)模型。最后,因通过残差白噪声检验,对数据进行分析并预测未来五年的我国的大豆产量。


一、问题分析


预测未来5年我国的大豆产量及其发展趋势,对国民经济与人民生活都是百利而无一害的。同时,还可以提前让国家了解未来的情况,及时作出应对措施。

我国的大豆出产量的数据,在此假设所有数据真实可靠(详见下表1),并假设在预测期内不发生任何影响我国的大豆出产量的突发事件。

difx=dif(x);
year=intnx('year', **'1jan1957'd**,_n_-**1**);


二、模型识别


首先,根据原始数据绘制时间序列图形,观察序列特征。图形如下:

plot x*year difx*year;

图1  我国的大豆产量时序图


点击标题查阅往期内容


Python用RNN神经网络:LSTM、GRU、回归和ARIMA对COVID19新冠疫情人数时间序列预测


01

02

03

04


由原始数据的时间序列图可以看出,资料数据呈现明显的上升趋势,其平均数不稳定,是非平稳序列。

图2 原始序列的自相关图

上图是自相关函数的结果,自相关函数衰减到0的速度缓慢,由此可以再次确定序列是非平稳的。

因为原序列呈现出上升的趋势,故选择1阶差分。1阶差分后的时序图如下所示。

图3  1阶差分后的时序图

 由该图可以看出差分后的时间序列在均值附近比较稳定地波动。为了进一步确定平稳性,考察差分后序列的自相关图(如下所示)。

接下来,我们对差分后的时间序列进行ARMA模型的建立。季节差分后数据的自相关函数如下:

图4  1阶差分后的自相关系数图

 

从上面的分析结果可以看到自相关图显示很强的短期相关性,所以可以初步认为1阶差分后序列平稳。

随后,对1阶差分后序列进行白噪声检验,结果如下图所示。

图5  1阶差分后白噪声检验图

在检验的显著水平取为0.05时,由于上述所有延迟阶数的P值都小于0.05,所以该差分后的序列不能视为白噪声序列,即差分后序列还蕴藏着不容忽视的相关信息可供提取。

1阶差分后序列的自相关图已经显示该序列自相关系数具有拖尾的性质。再考虑其偏自相关系数的性质(见下图)。

图6 偏自相关系数图

 

根据自相关图和偏自相关图的特点,进行模型的定阶。偏自相关图显示,延迟1阶和2阶的偏自相关系数显著大于2倍标准差范围内波动,其他阶数的偏自相关系数都比较小。通过多方面的考虑,最后认为AR(2)模型为最优模型。接着,综合考虑前面的差分运算,实际上是对原序列拟合模型ARIMA(2,1,0)。

 

三、参数估计


在此,本文采用最小二乘法来估计参数,得到未知参数的估计值为:

图7 参数估计图

 

四、模型确定


由上面的输出结果可知拟合的方程如下:

图8 模型拟合结果图

该输出形式等价于


五、模型检验


本文需要检验残差是否有自相关性,由SAS的分析结果得知,不存在自相关性,即残差序列通过白噪声检验。

图9残差白噪声检验


六、模型的预测


本文给出了后面5年的人口自然增长率预测值以及置信区间。

forecast lead=**5** id=year out=out;

plot x*year=**1** forecast*year=**2** l95*year=**3** u95*year=**3**/overlay;

图10 预测值以及置信区间

通过图示可以直观地看出该模型对序列的拟合效果良好。


七、 总结与建议


从对我国大豆出产量的预测值可以看出,大豆的产量会相对提高,不过提高的速率跟之前的相比也不会相差太大。因此,为了提高我国的大豆产量,我提出了以下几点:

1、为大豆生产提供技术支撑。目前我国水稻、玉米和小麦的单产基本位于国际领先水平,大豆单产却与国际水平有较大差距,这也说明提高我国大豆单产还是很有潜力的。所以,我们应该选育和改良大豆品种,为大豆生产提供优良的种质资源。

2、充分利用我国的自然资源,进一步扩大大豆的种植面积,为扩大我国大豆生产规模和优化区域布局提供保障。

3、提高我国大豆在国际市场的竞争优势,以食品的安全性为主打,向外国销售。

 

八、 参考文献


[1]应用时间序列分析(第三版),王燕 编著  中国人民大学出版社

相关文章
|
7月前
|
机器学习/深度学习 图计算
R语言广义线性模型(GLM)、全子集回归模型选择、检验分析全国风向气候数据(2)
R语言广义线性模型(GLM)、全子集回归模型选择、检验分析全国风向气候数据(2)
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
|
7月前
|
机器学习/深度学习 数据采集 数据可视化
R语言SVM、决策树与因子分析对城市空气质量分类与影响因素可视化研究
R语言SVM、决策树与因子分析对城市空气质量分类与影响因素可视化研究
|
7月前
|
存储 数据挖掘
R语言用GARCH模型波动率建模和预测、回测风险价值 (VaR)分析股市收益率时间序列
R语言用GARCH模型波动率建模和预测、回测风险价值 (VaR)分析股市收益率时间序列
|
7月前
|
机器学习/深度学习
R语言广义线性模型(GLM)、全子集回归模型选择、检验分析全国风向气候数据(1)
R语言广义线性模型(GLM)、全子集回归模型选择、检验分析全国风向气候数据
|
7月前
|
算法
R语言MCMC-GARCH、风险价值VaR模型股价波动分析上证指数时间序列
R语言MCMC-GARCH、风险价值VaR模型股价波动分析上证指数时间序列
R语言MCMC-GARCH、风险价值VaR模型股价波动分析上证指数时间序列
|
7月前
|
机器学习/深度学习 传感器 自然语言处理
时间序列预测的零样本学习是未来还是炒作:TimeGPT和TiDE的综合比较
最近时间序列预测预测领域的最新进展受到了各个领域(包括文本、图像和语音)成功开发基础模型的影响,例如文本(如ChatGPT)、文本到图像(如Midjourney)和文本到语音(如Eleven Labs)。这些模型的广泛采用导致了像TimeGPT[1]这样的模型的出现,这些模型利用了类似于它们在文本、图像和语音方面获得成功的方法和架构。
131 1
|
7月前
R语言Lee-Carter模型对年死亡率建模预测预期寿命
R语言Lee-Carter模型对年死亡率建模预测预期寿命
|
7月前
|
vr&ar
时间序列和ARIMA模型预测拖拉机销售的制造案例研究
时间序列和ARIMA模型预测拖拉机销售的制造案例研究
时间序列和ARIMA模型预测拖拉机销售的制造案例研究
|
7月前
|
监控 数据可视化 数据挖掘
对用电负荷时间序列数据进行K-medoids聚类建模和GAM回归|附数据代码
对用电负荷时间序列数据进行K-medoids聚类建模和GAM回归|附数据代码
下一篇
DataWorks