R语言用ARIMA模型滑动时间窗口识别网络流量时间序列异常值

简介: R语言用ARIMA模型滑动时间窗口识别网络流量时间序列异常值

全文链接:http://tecdat.cn/?p=30597


最近我们被要求解决时间序列异常检验的问题。有客户在使用大量的时间序列。这些时间序列基本上是每10分钟进行一次的网络测量,其中一些是周期性的(即带宽),而另一些则不是(即路由流量)点击文末“阅读原文”获取完整代码数据


他想要一个简单的算法来进行在线“异常值检测”。基本上,想将每个时间序列的整个历史数据保存在内存(或磁盘上),并且想检测实时场景中的任何异常值(每次捕获新样本时)。实现这些结果的最佳方法是什么?


目前正在使用移动平均线来消除一些噪音,但接下来呢?简单的事情,如标准差,...针对整个数据集效果不佳(不能假设时间序列是平稳的),想要更“准确”的东西,理想情况下是黑匣子。我们提出一些方案,例如:

将查找时间序列异常值(并选择性地在图中显示它们)。它将处理季节性和非季节性时间序列。基本思想是找到趋势和季节性成分的可靠估计并减去它们。然后找出残差中的异常值。残差异常值的检验与标准箱线图的检验相同 - 大于或低于上下四分位数的点大于1.5IQR 是假定的异常值。高于/低于这些阈值的 IQR 数量作为异常值“分数”返回。因此,分数可以是任何正数,对于非异常值,分数将为零。

异常值检测取决于数据的性质以及您愿意对它们做出的假设。 通用方法依赖于可靠的统计信息。这种方法的精神是以不受任何异常值影响的方式表征大部分数据,然后指出不符合该特征的任何单个值。

由于这是一个时间序列,因此增加了需要持续(重新)检测异常值的复杂性。如果要在系列展开时执行此操作,那么我们只能使用旧数据进行检测,而不能使用未来的数据。此外,为了防止许多重复测试,我们使用一种误报率非常低的方法。

这些注意事项建议对数据运行简单、可靠的移动窗口异常值测试。有很多可能性,但一种简单、易于理解和易于实现的是基于运行ARIMA:与中位数的中位数绝对偏差。这是数据中变异的强稳健度量,类似于标准差。离群将比中位数大几个ARIMA或更多。


读取数据


data1=read.table("正常数据.txt")
data2=read.table("异常数据.txt")
data3=read.table("异常数据第二组.txt")
#查看数据
head(data1)
head(data2)
head(data3)

绘制时间序列图


plot.ts(data1)

临时变化的离群值


在识别异常值和建议一个合适的ARIMA模型方面做得很好。见下面应用auto.arima。

点击标题查阅往期内容


python深度学习实现自编码器Autoencoder神经网络异常检测心电图ECG时间序列


01

02

03

04


拟合arima模型,得出最优参数

fit=auto.arima(data1,trace=T)
Fit

得出最优的arima模型p=1 q=1

将数据转换成time series格式


使用函数检测异常点 参数比照上面autorima得出的参数p=1 q=1

to(tsmethod = "auto.arima"
                  ,argethod=list( stepwise=FALSE ))
                  #设置环境参数 时间窗口和异常点范围阈值
window <- 30
threshold <- 3
#求出中位数几倍范围之外的样本点作为异常点
ut <- function(x) {
m = median(x);
 median(x) + threshold * median(abs(x - m))
}
#移动时间窗口查看时间序列中的符合条件的时间点
 
z <- rollaly(zoo(data2))

找出data2中符合条件的时间点作为异常序列

相关文章
|
3天前
|
监控 安全 BI
什么是零信任模型?如何实施以保证网络安全?
随着数字化转型,网络边界不断变化,组织需采用新的安全方法。零信任基于“永不信任,永远验证”原则,强调无论内外部,任何用户、设备或网络都不可信任。该模型包括微分段、多因素身份验证、单点登录、最小特权原则、持续监控和审核用户活动、监控设备等核心准则,以实现强大的网络安全态势。
|
12天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
1月前
|
存储 网络协议 安全
30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场
本文精选了 30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场。
83 2
|
1月前
|
运维 网络协议 算法
7 层 OSI 参考模型:详解网络通信的层次结构
7 层 OSI 参考模型:详解网络通信的层次结构
115 1
|
1月前
|
网络协议 算法 网络性能优化
计算机网络常见面试题(一):TCP/IP五层模型、TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议
计算机网络常见面试题(一):TCP/IP五层模型、应用层常见的协议、TCP与UDP的区别,TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议、ARP协议
|
1月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
85 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 编解码 算法
【深度学习】经典的深度学习模型-01 开山之作:CNN卷积神经网络LeNet-5
【深度学习】经典的深度学习模型-01 开山之作:CNN卷积神经网络LeNet-5
50 0
|
3月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
2月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
55 3
|
7月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
下一篇
DataWorks