LC串联谐振拓扑仿真建模

简介: 该文介绍了直流高压电源的应用领域,如高端分析仪器和国防科技,并重点讨论了其中常用的LC串联谐振拓扑结构。文章接着阐述了变换器的三种工作模式,重点关注在DCM模式下的仿真建模。电路设计包括原边和副边电路的详细参数,如电源技术指标、变压器变比、谐振频率等。使用Simulink搭建了LC串联谐振变换器模型,并进行了开环和闭环调试,证明了通过调整开关频率能有效控制输出电压,实现了期望的电源性能。

直流高压电源主要应用于高端精密分析仪器、高端医疗分析仪器、静电应用、激光雷达、核探测、惯性导航、雷达通信、电子对抗、高功率脉冲、等离子体推进等行业领域。

LC串联谐振拓扑是直流高压电源中最为常用的拓扑结构。上一期内容中我们对 LC 串联谐振变换器的工作原理进行了分析,今天继续为大家分享 LC 串联谐振变换器的仿真建模及控制策略分析。

根据开关频率 f~ s ~ 与谐振频率 f ~ r ~ 的关系,变换器有三种工作模式,而实际应用时一般工作在 DCM 模式(0< f ~ s ~ < 0.5f ~ r~)。这里我们将对电路参数进行设计,并使用 Simulink 软件搭建LC串联谐振变换器模型,对电路 DCM 模式进行仿真。

一、电路设计

01、电路拓扑设计

LC 串联谐振拓扑包括: 原边 LC 全桥串联谐振电路、变压器和副边整流电路。

副边电路常用的有全桥整流电路以及倍压整流电路,这里以副边整流采用全桥整流电路为例,电路拓扑结构如图所示:

02、电源技术指标设计

❏**输入电压 ** v~ in~ 100V(95~105)

❏**充电电压 ** v~ o~ **:**1000V

❏**充电时间 ** t 1s

❏**负载电容 ** c~ d~ 500μF

❏**最大工作频率 ** f~ smax~ **:**10kHz

03、器件参数设计

▍变压器变比N设计

V~ omax~

N ~max ~ = ——————

V~ inmin~

V~ omin~

N ~min ~ = ——————

V~ inmax~

这里变压器变比选取 N=10

▍谐振频率设计

电路工作在 DCM 模式下 0<f~ s~<0.5f~ r~,f ~ r ~ = 2f~smax ~= 20kHz

▍谐振电感与谐振电容设计

根据上式可以解得 L ~ r~ =1.1mH,C ~ r~ =6.9μF。

二、电路仿真

01、电路模型搭建

目前,电路仿真软件很多,本次我们采用Matlab中的可视化电路仿真软件包 Simulink 进行电路模型搭建。

Simulink 被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。

接下来就让我们一起进行 LC 串联谐振变换器电路模型搭建。

▍启动 Simulink

打开 Matlab 软件,启动 Simulink;

模块****器件选择

点击“ 模块库浏览器 ”图标进行器件选择。

以直流电压源为例,搜索“Elec trical Sources”,选择“DC Voltagte Source”,拖拽至模型搭建界面;

参数设置

双击器件进行参数设置。

以直流电压源为例,双击电压源图标会弹出参数设置界面,填入输入额定电压值“100”V即可

电路模型

重复上述步骤进行器件选择与参数设置后,按照电路拓扑结构对器件进行连接,得到的LC串联谐振变换器模型如图:

02、开环调试

电路模型搭建完成后,在输入与输出端添加传感器模块,并接入示波器模块中进行波形观察;然后搭建 PWM 波形产生电路并输入至开关器件端。

开环调试电路如图所示:

此处 PWM 控制方式为调频控制,通过改变开关频率达到调节输出电压的目的。

首先设置 PWM 开关频率为 1kHz,占空比为40%,可以看到输出电压幅值在1200V左右;然后设置开关频率为 5kHz,可以观察到输出电压为350V左右。

如此,电路输出电压波形符合预期,且可通过改变开关频率实现输出电压调节,符合电路控制规律。

03、闭环调试

这里闭环采用 PI 控制方式,电路设计如图:

点击“运行”按钮进行拓扑电路的闭环调试,点击波形采集窗口可以观察到输出电压波形如图。

这里设置的闭环输出电压为1000V,可以看到输出电压最终稳定在1000V,符合变换器设计要求。

到这里,LC 串联谐振变换器的电路设计与仿真已经完成了,电源的输出基本符合预期。

相关文章
|
7月前
|
传感器 数据可视化
LC串联谐振拓扑仿真建模
该文介绍了直流高压电源的应用领域,如高端分析仪器、静电应用等,并重点讲解了其中常用的LC串联谐振拓扑。文章详细阐述了电路设计过程,包括变压器变比、谐振频率等参数的计算,以及如何使用Simulink搭建和仿真电路模型,通过开环和闭环调试验证了输出电压的可控性。
|
机器学习/深度学习 传感器 数据可视化
基于matlab模拟无线网络拓扑、估计链路质量并可视化拓扑
基于matlab模拟无线网络拓扑、估计链路质量并可视化拓扑
一阶动态电路时域分析
一阶动态电路时域分析是指研究电路在时间域内响应特性的一种分析方法。 一阶动态电路时域分析的主要特征和意义如下: 对象是一阶电路。一阶电路指其动态行为可以用一个一阶微分方程描述的电路,如RC电路、RL电路等。 分析域是时间域。研究的不是电路在不同频率下的频率响应,而是输入信号作用下输出量随时间的变化规律。 研究内容是电路的时域响应特性。如电路对阶跃输入的阶跃响应、对脉冲输入的脉冲响应曲线等。 主要方法是解一阶微分方程。根据电路的等效模型写出其一阶微分方程,然后选择适当解法求其时间域解。 目的是分析电路的动态性能。如过渡过程、时间常数、稳态误差等定量参数,为电路设计和应用提供参考。
233 0
|
7月前
|
算法 异构计算
m基于FPGA的MPPT最大功率跟踪算法verilog实现,包含testbench
该内容包括三部分:1) 展示了Vivado 2019.2和Matlab中关于某种算法的仿真结果图像,可能与太阳能光伏系统的最大功率点跟踪(MPPT)相关。2) 简述了MPPT中的爬山法原理,通过调整光伏电池工作点以找到最大功率输出。3) 提供了一个Verilog程序模块`MPPT_test_tops`,用于测试MPPT算法,其中包含`UI_test`和`MPPT_module_U`两个子模块,处理光伏电流和电压信号。
73 1
|
7月前
|
运维 并行计算 异构计算
LabVIEW硬件在环仿真模拟电路故障分析和特征提取
LabVIEW硬件在环仿真模拟电路故障分析和特征提取
48 0
|
7月前
|
传感器 数据可视化
LC串联谐振拓扑仿真建模及控制策略分析
该文介绍了直流高压电源的应用领域,特别是LC串联谐振拓扑在其中的重要性。文章接着详细阐述了LC串联谐振变换器的工作模式,重点讨论了在DCM模式下的电路参数设计,包括变压器变比、谐振频率和器件参数等,并使用Simulink搭建模型进行电路仿真。仿真过程分为电路模型搭建、开环调试和闭环调试,验证了输出电压可调且能稳定在设定值,实现了变换器的设计目标。
104 2
|
算法 调度
基于多层编码遗传算法的车间调度
遗传算法具有较强的问题求解能力,能够解决非线性优化问题。遗传算法中的每个染色体表示问题中的一个潜在最优解,对于简单的问题来说,染色体可以方便地表达问题的潜在解,然而,对于较为复杂的优化问题,一个染色体难以准确表达问题的解。多层编码遗传算法把个体编码分为多层,每层编码均表示不同的含义,多层编码共同完整表达了问题的解,从而用一个染色体准确表达出了复杂问题的解。多层编码遗传算法扩展了遗传算法的使用领域,使得遗传算法可以方便用于复杂问题的求解。
基于多层编码遗传算法的车间调度
串联谐振
串联谐振是指在一个串联电路中,通过合适的电容和电感元件组合,使得电路在某一特定频率下呈现出阻抗最小的现象。在这个频率下,电路的阻抗仅由电容和电感的阻抗组成,而且两者相互抵消,电路呈现为纯电阻。
43 0
|
机器学习/深度学习 传感器 算法
基于Matlab模拟无线网络拓扑、估计链路质量并可视化拓扑
基于Matlab模拟无线网络拓扑、估计链路质量并可视化拓扑
|
数据可视化 算法
时序分解 | MATLAB实现基于SGMD辛几何模态分解的信号分解分量可视化
时序分解 | MATLAB实现基于SGMD辛几何模态分解的信号分解分量可视化