Redis入门到通关之数据结构解析-ZipList

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
全局流量管理 GTM,标准版 1个月
简介: Redis入门到通关之数据结构解析-ZipList

☃️概述


ZipList 是一种特殊的“双端链表” ,由一系列特殊编码的连续内存块组成。可以在任意一端进行压入/弹出操作, 并且该操作的时间复杂度为 O(1)。

属性 类型 长度 用途
zlbytes uint32_t 4 字节 记录整个压缩列表占用的内存字节数
zltail uint32_t 4 字节 记录压缩列表表尾节点距离压缩列表的起始地址有多少字节,通过这个偏移量,可以确定表尾节点的地址。
zllen uint16_t 2 字节 记录了压缩列表包含的节点数量。 最大值为UINT16_MAX (65534),如果超过这个值,此处会记录为65535,但节点的真实数量需要遍历整个压缩列表才能计算得出。
entry 列表节点 不定 压缩列表包含的各个节点,节点的长度由节点保存的内容决定。
zlend uint8_t 1 字节 特殊值 0xFF (十进制 255 ),用于标记压缩列表的末端。


☃️ZipListEntry


ZipList 中的Entry并不像普通链表那样记录前后节点的指针,因为记录两个指针要占用16个字节,浪费内存。而是采用了下面的结构:

  • previous_entry_length:前一节点的长度,占1个或5个字节。
  • 如果前一节点的长度小于254字节,则采用1个字节来保存这个长度值
  • 如果前一节点的长度大于254字节,则采用5个字节来保存这个长度值,第一个字节为0xfe,后四个字节才是真实长度数据
  • encoding:编码属性,记录content的数据类型(字符串还是整数)以及长度,占用1个、2个或5个字节
  • contents:负责保存节点的数据,可以是字符串或整数

ZipList中所有存储长度的数值均采用小端字节序,即低位字节在前,高位字节在后。例如:数值0x1234,采用小端字节序后实际存储值为:0x3412


☃️Encoding编码


ZipListEntry中的encoding编码分为字符串和整数两种:

字符串:如果encoding是以“00”、“01”或者“10”开头,则证明content是字符串

编码 编码长度 字符串大小
|00pppppp| 1 bytes <= 63 bytes
|01pppppp|qqqqqqqq| 2 bytes <= 16383 bytes
|10000000|qqqqqqqq|rrrrrrrr|ssssssss|tttttttt| 5 bytes <= 4294967295 bytes

例如,我们要保存字符串:“ab”和 “bc”

ZipListEntry中的encoding编码分为字符串和整数两种:

  • 整数:如果encoding是以“11”开始,则证明content是整数,且encoding固定只占用1个字节
编码 编码长度 整数类型
11000000 1 int16_t(2 bytes)
11010000 1 int32_t(4 bytes)
11100000 1 int64_t(8 bytes)
11110000 1 24位有符整数(3 bytes)
11111110 1 8位有符整数(1 bytes)
1111xxxx 1 直接在xxxx位置保存数值,范围从0001~1101,减1后结果为实际值


☃️ZipList的连锁更新问题


ZipList的每个Entry都包含previous_entry_length来记录上一个节点的大小,长度是1个或5个字节:

如果前一节点的长度小于254字节,则采用1个字节来保存这个长度值

如果前一节点的长度大于等于254字节,则采用5个字节来保存这个长度值,第一个字节为0xfe,后四个字节才是真实长度数据

现在,假设我们有N个连续的、长度为250~253字节之间的entry,因此entry的1previous_entry_length1属性用1个字节即可表示,如图所示:

ZipList这种特殊情况下产生的连续多次空间扩展操作称之为连锁更新(Cascade Update)。新增、删除都可能导致连锁更新的发生。


☃️总结


ZipList特性

  • 压缩列表的可以看做一种连续内存空间的"双向链表"
  • 列表的节点之间不是通过指针连接,而是记录上一节点和本节点长度来寻址,内存占用较低
  • 如果列表数据过多,导致链表过长,可能影响查询性能
  • 增或删较大数据时有可能发生连续更新问题
相关文章
|
17天前
|
存储 消息中间件 缓存
Redis 5 种基础数据结构?
Redis的五种基础数据结构——字符串、哈希、列表、集合和有序集合——提供了丰富的功能来满足各种应用需求。理解并灵活运用这些数据结构,可以极大地提高应用程序的性能和可扩展性。
25 2
|
29天前
|
缓存 NoSQL PHP
Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出
本文深入探讨了Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出。文章还介绍了Redis在页面缓存、数据缓存和会话缓存等应用场景中的使用,并强调了缓存数据一致性、过期时间设置、容量控制和安全问题的重要性。
39 5
|
1月前
|
存储 NoSQL 关系型数据库
Redis的ZSet底层数据结构,ZSet类型全面解析
Redis的ZSet底层数据结构,ZSet类型全面解析;应用场景、底层结构、常用命令;压缩列表ZipList、跳表SkipList;B+树与跳表对比,MySQL为什么使用B+树;ZSet为什么用跳表,而不是B+树、红黑树、二叉树
|
1月前
|
存储 NoSQL Redis
Redis常见面试题:ZSet底层数据结构,SDS、压缩列表ZipList、跳表SkipList
String类型底层数据结构,List类型全面解析,ZSet底层数据结构;简单动态字符串SDS、压缩列表ZipList、哈希表、跳表SkipList、整数数组IntSet
|
2月前
|
存储 缓存 NoSQL
数据的存储--Redis缓存存储(一)
数据的存储--Redis缓存存储(一)
100 1
|
2月前
|
存储 缓存 NoSQL
数据的存储--Redis缓存存储(二)
数据的存储--Redis缓存存储(二)
52 2
数据的存储--Redis缓存存储(二)
|
2月前
|
消息中间件 缓存 NoSQL
Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。
【10月更文挑战第4天】Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。随着数据增长,有时需要将 Redis 数据导出以进行分析、备份或迁移。本文详细介绍几种导出方法:1)使用 Redis 命令与重定向;2)利用 Redis 的 RDB 和 AOF 持久化功能;3)借助第三方工具如 `redis-dump`。每种方法均附有示例代码,帮助你轻松完成数据导出任务。无论数据量大小,总有一款适合你。
78 6
|
1月前
|
缓存 NoSQL 关系型数据库
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
本文详解缓存雪崩、缓存穿透、缓存并发及缓存预热等问题,提供高可用解决方案,帮助你在大厂面试和实际工作中应对这些常见并发场景。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
|
1月前
|
存储 缓存 NoSQL
【赵渝强老师】基于Redis的旁路缓存架构
本文介绍了引入缓存后的系统架构,通过缓存可以提升访问性能、降低网络拥堵、减轻服务负载和增强可扩展性。文中提供了相关图片和视频讲解,并讨论了数据库读写分离、分库分表等方法来减轻数据库压力。同时,文章也指出了缓存可能带来的复杂度增加、成本提高和数据一致性问题。
【赵渝强老师】基于Redis的旁路缓存架构
|
1月前
|
缓存 NoSQL Redis
Redis 缓存使用的实践
《Redis缓存最佳实践指南》涵盖缓存更新策略、缓存击穿防护、大key处理和性能优化。包括Cache Aside Pattern、Write Through、分布式锁、大key拆分和批量操作等技术,帮助你在项目中高效使用Redis缓存。
241 22

推荐镜像

更多