Redis入门到通关之Redis缓存数据实战

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: Redis入门到通关之Redis缓存数据实战

☃️什么是缓存?


缓存就像自行车,越野车的避震器

举个栗子: 越野车,山地自行车,都拥有"避震器",防止车体加速后因惯性,在酷似"U"字母的地形上飞跃,硬着陆导致的损害,像个弹簧一样;

同样,实际开发中,系统也需要"避震器", 防止过高的数据访问猛冲系统,导致其操作线程无法及时处理信息而瘫痪;

这在实际开发中对企业讲,对产品口碑,用户评价都是致命的; 所以企业非常重视缓存技术;

缓存(Cache),就是数据交换的缓冲区,俗称的缓存就是缓冲区内的数据,一般从数据库中获取,存储于本地.


❄️❄️为什么要使用缓存

一句话:因为 响应速度快, 用户体验用

缓存数据存储于代码中,而代码运行在内存中,内存的读写性能远高于磁盘,缓存可以大大降低用户访问并发量带来的 服务器读写压力

实际开发过程中,企业的数据量,少则几十万,多则几千万,这么大数据量,如果没有缓存来作为"避震器",系统是几乎撑不住的,所以企业会大量运用到缓存技术;

但是缓存也会增加代码复杂度和运营的成本:

  • 数据一致性成本
  • 代码维护成本
  • 运维成本

❄️❄️如何使用缓存

实际开发中,会构筑多级缓存来使系统运行速度进一步提升,例如: 本地缓存与redis中的缓存结合使用

浏览器缓存:主要是存在于浏览器端的缓存

应用层缓存: 可以分为tomcat本地缓存,比如之前提到的map,或者是使用redis作为缓存

数据库缓存: 在数据库中有一片空间是 buffer pool,增改查数据都会先加载到mysql的缓存中

CPU缓存: 当代计算机最大的问题是 cpu性能提升了,但内存读写速度没有跟上,所以为了适应当下的情况,增加了cpu的L1,L2,L3级的缓存


☃️缓存实战


当我们查询热点信息时, 我们如果直接去数据库查, 高并发下那响应时间肯定慢, 所以我们需要增加缓存.


❄️❄️缓存模型和思路

标准的操作方式就是查询数据库之前先查询缓存,如果缓存数据存在,则直接从缓存中返回,如果缓存数据不存在,再查询数据库,然后将数据存入 Redis


❄️❄️演示代码

public Result get(Long id){
    if( id < 0 ){
        return Result.ok(null);
    }
    String key = "XXXX:" + id;
    //  先从redis缓存查
    String value = redisTemplate.opsForValue().get(key);
    //  判断是否存在
    if( StringUtils.isNotBlank(value) ){
        //  存在直接返回
        return Result.ok(JSON.parse(value, WorkTicket.class));
    }
    //  不存在去数据库查
    WorkTicket workTicket = workTicketService.getById(id);
    //  不存在 返回空
    if( workTicket == null ){
        return Result.ok(null);
    }
    //  写入缓存
    redisTemplate.opsForValue().set(key, JSON.toJSONString(workTicket));
    return Result.ok(workTicket);
}


☃️缓存更新策略


缓存更新是Redis为了节约内存而设计出来的一个东西,主要是因为内存数据宝贵,当我们向Redis插入太多数据,此时就可能会导致缓存中的数据过多,所以Redis会对部分数据进行更新,或者把他叫为淘汰更合适。

内存淘汰: Redis自动进行,当Redis内存达到咱们设定的 max-memery 的时候,会自动触发淘汰机制,淘汰掉一些不重要的数据(可以自己设置策略方式)

超时剔除: 当我们给Redis设置了过期时间 ttl 之后,Redis 会将超时的数据进行删除

主动更新: 我们可以手动调用方法把缓存删掉,通常用于解决缓存和数据库不一致问题

业务场景

低一致性需求:使用内存淘汰机制。

高一致性需求:主动更新,并以超时剔除作为兜底方案。


❄️❄️数据库缓存不一致解决方案


由于我们的 缓存的数据源来自于数据库, 而数据库的 数据是会发生变化的, 因此,如果当数据库中 数据发生变化,而缓存却没有同步, 此时就会有 一致性问题存在, 其后果是:

用户使用缓存中的过时数据,就会产生类似多线程数据安全问题,从而影响业务,产品口碑等;怎么解决呢?有如下几种方案

人工编码方式:缓存调用者在更新完数据库后再去更新缓存,也称之为双写方案

由系统本身完成: 数据库与缓存的问题交由系统本身去处理

调用者只操作缓存: 其他线程去异步处理数据库,实现最终一致

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
2月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
3天前
|
Web App开发 存储 缓存
如何精准清除特定类型或标签的缓存数据?
如何精准清除特定类型或标签的缓存数据?
34 0
|
2月前
|
缓存 NoSQL Java
Redis+Caffeine构建高性能二级缓存
大家好,我是摘星。今天为大家带来的是Redis+Caffeine构建高性能二级缓存,废话不多说直接开始~
366 0
|
26天前
|
缓存 监控 NoSQL
Redis 实操要点:Java 最新技术栈的实战解析
本文介绍了基于Spring Boot 3、Redis 7和Lettuce客户端的Redis高级应用实践。内容包括:1)现代Java项目集成Redis的配置方法;2)使用Redisson实现分布式可重入锁与公平锁;3)缓存模式解决方案,包括布隆过滤器防穿透和随机过期时间防雪崩;4)Redis数据结构的高级应用,如HyperLogLog统计UV和GeoHash处理地理位置。文章提供了详细的代码示例,涵盖Redis在分布式系统中的核心应用场景,特别适合需要处理高并发、分布式锁等问题的开发场景。
143 38
|
2月前
|
数据采集 存储 NoSQL
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
基于Scrapy-Redis的分布式景点数据爬取与热力图生成
229 67
|
26天前
|
缓存 NoSQL 算法
高并发秒杀系统实战(Redis+Lua分布式锁防超卖与库存扣减优化)
秒杀系统面临瞬时高并发、资源竞争和数据一致性挑战。传统方案如数据库锁或应用层锁存在性能瓶颈或分布式问题,而基于Redis的分布式锁与Lua脚本原子操作成为高效解决方案。通过Redis的`SETNX`实现分布式锁,结合Lua脚本完成库存扣减,确保操作原子性并大幅提升性能(QPS从120提升至8,200)。此外,分段库存策略、多级限流及服务降级机制进一步优化系统稳定性。最佳实践包括分层防控、黄金扣减法则与容灾设计,强调根据业务特性灵活组合技术手段以应对高并发场景。
398 7
|
2月前
|
消息中间件 缓存 NoSQL
基于Spring Data Redis与RabbitMQ实现字符串缓存和计数功能(数据同步)
总的来说,借助Spring Data Redis和RabbitMQ,我们可以轻松实现字符串缓存和计数的功能。而关键的部分不过是一些"厨房的套路",一旦你掌握了这些套路,那么你就像厨师一样可以准备出一道道饕餮美食了。通过这种方式促进数据处理效率无疑将大大提高我们的生产力。
125 32
|
1月前
|
存储 缓存 NoSQL
告别数据僵尸!Redis实现自动清理过期键值对
在数据激增的时代,Redis如同内存管理的智能管家,支持键值对的自动过期功能,实现“数据保鲜”。通过`EXPIRE`设定生命倒计时、`TTL`查询剩余时间,结合惰性删除与定期清理策略,Redis高效维护内存秩序。本文以Python实战演示其过期机制,并提供最佳实践指南,助你掌握数据生命周期管理的艺术,让数据优雅退场。
128 0
|
11月前
|
SQL 存储 NoSQL
Redis6入门到实战------ 一、NoSQL数据库简介
这篇文章是关于NoSQL数据库的简介,讨论了技术发展、NoSQL数据库的概念、适用场景、不适用场景,以及常见的非关系型数据库。文章还提到了Web1.0到Web2.0时代的技术演进,以及解决CPU、内存和IO压力的方法,并对比了行式存储和列式存储数据库的特点。
Redis6入门到实战------ 一、NoSQL数据库简介
|
11月前
|
NoSQL 算法 安全
Redis6入门到实战------ 四、Redis配置文件介绍
这篇文章详细介绍了Redis配置文件中的各种设置,包括单位定义、包含配置、网络配置、守护进程设置、日志记录、密码安全、客户端连接限制以及内存使用策略等。
Redis6入门到实战------ 四、Redis配置文件介绍

热门文章

最新文章