数据分享|多变量多元多项式曲线回归线性模型分析母亲吸烟对新生婴儿体重影响可视化

本文涉及的产品
文件存储 NAS,50GB 3个月
简介: 数据分享|多变量多元多项式曲线回归线性模型分析母亲吸烟对新生婴儿体重影响可视化

全文链接:http://tecdat.cn/?p=26147 


本文使用的数据集记录了 1236 名新生婴儿的体重查看文末了解数据获取方式,以及他们母亲的其他协变量。


本研究的目的是测量吸烟对新生儿体重的影响。研究人员需要通过控制其他协变量(例如母亲的体重和身高)来隔离其影响。这可以通过使用多元回归模型来完成,例如,通过考虑权重  Y_i  可以建模为


str(babis)

数据集的描述如下:

  • bwt 是因变量,新生儿体重以盎司为单位。数据集使用 999 作为缺失值。
  • gestation 是怀孕的时间,以天为单位。999 是缺失值的代码。
  • parity 第一胎使用 0,否则使用 1,缺失值使用 9。
  • age 是母亲的年龄,整数。99 是缺失值。
  • height 是母亲的身高。99 是缺失值。
  • weight 是母亲的体重,以磅为单位。999 是一个缺失值。
  • smoke 是一个分类变量,表示母亲现在是否吸烟 (1) (0)。9 是缺失值。

这个问题的研究人员想要判断以下内容:

  • 吸烟的母亲会增加早产率。
  • 吸烟者的新生儿在每个胎龄都较小。
  • 与母亲的孕前身高和体重、产次、既往妊娠结局史或婴儿性别(这最后两个协变量不可用)相比,吸烟似乎是出生体重的一个更重要的决定因素。

我们将专注于第二个判断:

从str()命令中注意到,所有的变量都被存储为整数。我将把缺失值转换为NAs,这是R中缺失值的正确表示。

bwt == 999\] <- NA
# 有多少观察结果是缺失的?
sapply(babies, couna)

每当您在 R 中使用函数时,请记住,默认情况下它可能有也可能没有 na-action。例如,该 mean() 函数没有,并且 NA 在将缺少值的参数传递给它时简单地返回:

sapply(babies, mean)

您可以通过检查 mean() 函数帮助来纠正它,通过一个参数 na.rm=TRUE,它删除了 NAs。

sapply(babies, mean, na.rm = TRUE)

另一方面, 默认情况下summary() 会删除 NAs,并输出找到的 NAs 数量,这使其成为汇总数据时的首选。

summary(babies)

我们可以看到转换因子显示了不同的摘要,因为 summary() 操作根据变量类型而变化:

parity <- factor(parity, levels )

绘制数据是您应该采取的第一个操作。我将使用 lattice 包来绘制它,因为它的最大优势在于处理多变量数据。

require(lattice)

xyplot

为了拟合多元回归模型,我们使用命令 lm()


点击标题查阅往期内容


使用R语言进行多项式回归、非线性回归模型曲线拟合


01

02

03

04


model <- lm(bwt ~ ., data = babies)

这是总结:

summary(model)

注意R的默认动作是删除信息缺失的行。不过,如何解释这些系数呢?

如果j协变量xj是实值,那么系数βj的值就是在其他协变量不变的情况下,将xij增加1个单位对Yi的平均影响。

如果j协变量xj是分类的,那么系数βj的值是对Yi从参考类别到指定水平的平均增量影响,而其他协变量保持不变。参考类别的平均值是截距(或参考类别,如果模型中有一个以上的分类协变量)。

为了验证这些假设,R有一个绘图方案。

残差中的曲率表明,需要进行一些转换。尝试取bwt的对数,以获得更好的拟合(与妊娠期相比)。

summary(model.log)

为了简单起见,我会保留线性模型。给妊娠期增加一个二次项可能有用。公式通常保存^作为交互作用的快捷方式,所以(妊娠期+烟)^2与妊娠期*烟或妊娠期+烟+妊娠期:烟相同。

改进仍然很小,但它现在确实将观察样本 261 显示为异常值。这个观察有什么问题?

babies\[261, \]

我们可以看到,而母亲的身高、年龄等都非常合理;这个婴儿异常早产。因此,将他/她剔除出模型。

拟合度有所提高,但现在870号婴儿显示为异常值......这可以继续下去,直到我们都满意为止。你还会做哪些转化?将吸烟和妊娠期交互作用会更好吗?

相关实践学习
基于ECS和NAS搭建个人网盘
本场景主要介绍如何基于ECS和NAS快速搭建个人网盘。
阿里云文件存储 NAS 使用教程
阿里云文件存储(Network Attached Storage,简称NAS)是面向阿里云ECS实例、HPC和Docker的文件存储服务,提供标准的文件访问协议,用户无需对现有应用做任何修改,即可使用具备无限容量及性能扩展、单一命名空间、多共享、高可靠和高可用等特性的分布式文件系统。 产品详情:https://www.aliyun.com/product/nas
相关文章
|
8月前
|
机器学习/深度学习 数据可视化 安全
Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化(下)
Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化
|
8月前
|
机器学习/深度学习
数据分享|R语言广义线性模型GLM:线性最小二乘、对数变换、泊松、二项式逻辑回归分析冰淇淋销售时间序列数据和模拟-1
数据分享|R语言广义线性模型GLM:线性最小二乘、对数变换、泊松、二项式逻辑回归分析冰淇淋销售时间序列数据和模拟
|
8月前
|
机器学习/深度学习 数据可视化 Python
Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化(上)
Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化
|
8月前
|
存储 数据可视化 文件存储
多变量(多元)多项式曲线回归线性模型分析母亲吸烟对新生婴儿体重影响可视化
多变量(多元)多项式曲线回归线性模型分析母亲吸烟对新生婴儿体重影响可视化
|
8月前
|
数据可视化
多变量(多元)多项式曲线回归线性模型分析母亲吸烟对新生婴儿体重影响可视化-2
多变量(多元)多项式曲线回归线性模型分析母亲吸烟对新生婴儿体重影响可视化
|
8月前
|
机器学习/深度学习 人工智能 算法
数据分享|R语言广义线性模型GLM:线性最小二乘、对数变换、泊松、二项式逻辑回归分析冰淇淋销售时间序列数据和模拟-2
数据分享|R语言广义线性模型GLM:线性最小二乘、对数变换、泊松、二项式逻辑回归分析冰淇淋销售时间序列数据和模拟
|
8月前
|
存储
【视频】R语言中的分布滞后非线性模型(DLNM)与发病率,死亡率和空气污染示例
【视频】R语言中的分布滞后非线性模型(DLNM)与发病率,死亡率和空气污染示例
|
8月前
|
数据可视化
SPSS用多元逐步回归模型对上证指数预测、描述统计和相关分析可视化研究
SPSS用多元逐步回归模型对上证指数预测、描述统计和相关分析可视化研究
|
8月前
|
存储 数据可视化 文件存储
多变量(多元)多项式曲线回归线性模型分析母亲吸烟对新生婴儿体重影响可视化-1
多变量(多元)多项式曲线回归线性模型分析母亲吸烟对新生婴儿体重影响可视化
|
8月前
|
机器学习/深度学习 数据可视化
R语言非线性回归和广义线性模型:泊松、伽马、逻辑回归、Beta回归分析机动车事故、小鼠感染、蛤蜊数据、补剂钠摄入数据|数据分享(下)
R语言非线性回归和广义线性模型:泊松、伽马、逻辑回归、Beta回归分析机动车事故、小鼠感染、蛤蜊数据、补剂钠摄入数据|数据分享

热门文章

最新文章