全文链接:http://tecdat.cn/?p=26147
本文使用的数据集记录了 1236 名新生婴儿的体重(查看文末了解数据获取方式),以及他们母亲的其他协变量。
本研究的目的是测量吸烟对新生儿体重的影响。研究人员需要通过控制其他协变量(例如母亲的体重和身高)来隔离其影响。这可以通过使用多元回归模型来完成,例如,通过考虑权重 Y_i 可以建模为
str(babis)
数据集的描述如下:
bwt
是因变量,新生儿体重以盎司为单位。数据集使用 999 作为缺失值。gestation
是怀孕的时间,以天为单位。999 是缺失值的代码。parity
第一胎使用 0,否则使用 1,缺失值使用 9。age
是母亲的年龄,整数。99 是缺失值。height
是母亲的身高。99 是缺失值。weight
是母亲的体重,以磅为单位。999 是一个缺失值。smoke
是一个分类变量,表示母亲现在是否吸烟 (1) (0)。9 是缺失值。
这个问题的研究人员想要判断以下内容:
- 吸烟的母亲会增加早产率。
- 吸烟者的新生儿在每个胎龄都较小。
- 与母亲的孕前身高和体重、产次、既往妊娠结局史或婴儿性别(这最后两个协变量不可用)相比,吸烟似乎是出生体重的一个更重要的决定因素。
我们将专注于第二个判断:
从str()命令中注意到,所有的变量都被存储为整数。我将把缺失值转换为NAs,这是R中缺失值的正确表示。
bwt == 999\] <- NA # 有多少观察结果是缺失的? sapply(babies, couna)
每当您在 R 中使用函数时,请记住,默认情况下它可能有也可能没有 na-action。例如,该 mean()
函数没有,并且 NA
在将缺少值的参数传递给它时简单地返回:
sapply(babies, mean)
您可以通过检查 mean()
函数帮助来纠正它,通过一个参数 na.rm=TRUE
,它删除了 NA
s。
sapply(babies, mean, na.rm = TRUE)
另一方面, 默认情况下summary()
会删除 NA
s,并输出找到的 NA
s 数量,这使其成为汇总数据时的首选。
summary(babies)
我们可以看到转换因子显示了不同的摘要,因为 summary() 操作根据变量类型而变化:
parity <- factor(parity, levels )
绘制数据是您应该采取的第一个操作。我将使用 lattice
包来绘制它,因为它的最大优势在于处理多变量数据。
require(lattice)
xyplot
为了拟合多元回归模型,我们使用命令 lm()
。
点击标题查阅往期内容
01
02
03
04
model <- lm(bwt ~ ., data = babies)
这是总结:
summary(model)
注意R的默认动作是删除信息缺失的行。不过,如何解释这些系数呢?
如果j协变量xj是实值,那么系数βj的值就是在其他协变量不变的情况下,将xij增加1个单位对Yi的平均影响。
如果j协变量xj是分类的,那么系数βj的值是对Yi从参考类别到指定水平的平均增量影响,而其他协变量保持不变。参考类别的平均值是截距(或参考类别,如果模型中有一个以上的分类协变量)。
为了验证这些假设,R有一个绘图方案。
残差中的曲率表明,需要进行一些转换。尝试取bwt的对数,以获得更好的拟合(与妊娠期相比)。
summary(model.log)
为了简单起见,我会保留线性模型。给妊娠期增加一个二次项可能有用。公式通常保存^作为交互作用的快捷方式,所以(妊娠期+烟)^2与妊娠期*烟或妊娠期+烟+妊娠期:烟相同。
改进仍然很小,但它现在确实将观察样本 261 显示为异常值。这个观察有什么问题?
babies\[261, \]
我们可以看到,而母亲的身高、年龄等都非常合理;这个婴儿异常早产。因此,将他/她剔除出模型。
拟合度有所提高,但现在870号婴儿显示为异常值......这可以继续下去,直到我们都满意为止。你还会做哪些转化?将吸烟和妊娠期交互作用会更好吗?