Redis 内存回收

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: Redis 内存回收

Redis 中数据过期策略采用定期删除+惰性删除策略结合起来,以及采用淘汰策略来兜底。


定期删除策略:Redis 启用一个定时器定时监视所有的 key,判断key是否过期,过期的话就删除。这种策略可以保证过期的 key 最终都会被删除,但是也存在严重的缺点:每次都遍历内存中所有的数据,非常消耗 CPU 资源,并且当 key 已过期,但是定时器还处于未唤起状态,这段时间内 key 仍然可以用。


惰性删除策略:在获取 key 时,先判断 key 是否过期,如果过期则删除。这种方式存在一个缺点:如果这个 key 一直未被使用,那么它一直在内存中,其实它已经过期了,会浪费大量的空间。


这两种策略天然的互补,结合起来之后,定时删除策略就发生了一些改变,不在是每次扫描全部的 key 了,而是随机抽取一部分 key 进行检查,这样就降低了对 CPU 资源的损耗,惰性删除策略互补了为检查到的key,基本上满足了所有要求。但是有时候就是那么的巧,既没有被定时器抽取到,又没有被使用,这些数据又如何从内存中消失?没关系,还有内存淘汰机制,当内存不够用时,内存淘汰机制就会上场。


内存淘汰机制

内存淘汰机制就保证了在redis的内存占用过多的时候,去进行内存淘汰,也就是删除一部分key,保证redis的内存占用率不会过高。


redis 提供 6种数据淘汰策略:

volatile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰

volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰

volatile-random:从已设置过期时间的数据集(server.db[i].expires)中随机移除key

allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的key(这个是最常用的)

allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰

noeviction:当内存不足以容纳新写入数据时,新写入操作会报错,无法写入新数据,一般不采用

4.0版本后增加以下两种:

volatile-lfu:从已设置过期时间的数据集(server.db[i].expires)中挑选最不经常使用的数据淘汰

allkeys-lfu:当内存不足以容纳新写入数据时,在键空间中,移除最不经常使用的key


1. 过期key处理


Redis之所以性能强,最主要的原因就是基于内存存储。然而单节点的Redis其内存大小不宜过大,会影响持久化或主从同步性能。我们可以通过修改配置文件来设置Redis的最大内存:

当内存使用达到上限时,就无法存储更多数据了。为了解决这个问题,Redis提供了一些策略实现内存回收:

内存过期策略

在学习Redis缓存的时候我们说过,可以通过expire命令给Redis的key设置TTL(存活时间):

可以发现,当key的TTL到期以后,再次访问name返回的是nil,说明这个key已经不存在了,对应的内存也得到释放。从而起到内存回收的目的。

Redis本身是一个典型的key-value内存存储数据库,因此所有的key、value都保存在之前学习过的Dict结构中。不过在其database结构体中,有两个Dict:一个用来记录key-value;另一个用来记录key-TTL。


这里有两个问题需要我们思考:Redis是如何知道一个key是否过期呢?

利用两个Dict分别记录key-value对及key-ttl对

是不是TTL到期就立即删除了呢?


1.1 惰性删除


惰性删除:顾明思议并不是在TTL到期后就立刻删除,而是在访问一个key的时候,检查该key的存活时间,如果已经过期才执行删除。


1.2 周期删除


周期删除:顾明思议是通过一个定时任务,周期性的抽样部分过期的key,然后执行删除。执行周期有两种:

Redis服务初始化函数initServer()中设置定时任务,按照server.hz的频率来执行过期key清理,模式为SLOW

Redis的每个事件循环前会调用beforeSleep()函数,执行过期key清理,模式为FAST


周期删除:顾明思议是通过一个定时任务,周期性的抽样部分过期的key,然后执行删除。执行周期有两种:

Redis服务初始化函数initServer()中设置定时任务,按照server.hz的频率来执行过期key清理,模式为SLOW

Redis的每个事件循环前会调用beforeSleep()函数,执行过期key清理,模式为FAST


SLOW模式规则:

  • 执行频率受server.hz影响,默认为10,即每秒执行10次,每个执行周期100ms。
  • 执行清理耗时不超过一次执行周期的25%.默认slow模式耗时不超过25ms
  • 逐个遍历db,逐个遍历db中的bucket,抽取20个key判断是否过期
  • 如果没达到时间上限(25ms)并且过期key比例大于10%,再进行一次抽样,否则结束
  • FAST模式规则(过期key比例小于10%不执行 ):
  • 执行频率受beforeSleep()调用频率影响,但两次FAST模式间隔不低于2ms
  • 执行清理耗时不超过1ms
  • 逐个遍历db,逐个遍历db中的bucket,抽取20个key判断是否过期
  • 如果没达到时间上限(1ms)并且过期key比例大于10%,再进行一次抽样,否则结束


小总结:

RedisKey的TTL记录方式:

在RedisDB中通过一个Dict记录每个Key的TTL时间

过期key的删除策略:

惰性清理:每次查找key时判断是否过期,如果过期则删除

定期清理:定期抽样部分key,判断是否过期,如果过期则删除。

定期清理的两种模式:

SLOW模式执行频率默认为10,每次不超过25ms

FAST模式执行频率不固定,但两次间隔不低于2ms,每次耗时不超过1ms


2. 内存淘汰策略


内存淘汰:就是当Redis内存使用达到设置的上限时,主动挑选部分key删除以释放更多内存的流程。Redis会在处理客户端命令的方法processCommand()中尝试做内存淘汰:


淘汰策略


  • Redis支持8种不同策略来选择要删除的key:
  • noeviction: 不淘汰任何key,但是内存满时不允许写入新数据,默认就是这种策略(不推荐使用)。
  • volatile-ttl: 对设置了TTL的key,比较key的剩余TTL值,TTL越小越先被淘汰
  • allkeys-random:对全体key ,随机进行淘汰。也就是直接从db->dict中随机挑选
  • volatile-random:对设置了TTL的key ,随机进行淘汰。也就是从db->expires中随机挑选。
  • allkeys-lru: 对全体key,基于LRU算法进行淘汰
  • volatile-lru: 对设置了TTL的key,基于LRU算法进行淘汰
  • allkeys-lfu: 对全体key,基于LFU算法进行淘汰
  • volatile-lfu: 对设置了TTL的key,基于LFI算法进行淘汰比较容易混淆的有两个:

LRU(Least Recently Used),最少最近使用。用当前时间减去最后一次访问时间,这个值越大则淘汰优先级越高。

LFU(Least Frequently Used),最少频率使用。会统计每个key的访问频率,值越小淘汰优先级越高。


可以通过在Redis的配置文件中设置maxmemory-policy选项来选择合适的内存淘汰策略。

例如,将其设置为allkeys-lru:

maxmemory-policy allkeys-lru
相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
1月前
|
NoSQL 算法 Redis
redis内存淘汰策略
Redis支持8种内存淘汰策略,包括noeviction、volatile-ttl、allkeys-random、volatile-random、allkeys-lru、volatile-lru、allkeys-lfu和volatile-lfu。这些策略分别针对所有键或仅设置TTL的键,采用随机、LRU(最近最久未使用)或LFU(最少频率使用)等算法进行淘汰。
50 5
|
2月前
|
程序员 开发者
分代回收和手动内存管理相比有何优势
分代回收和手动内存管理相比有何优势
|
3月前
|
算法 Java 程序员
内存回收
【10月更文挑战第9天】
76 5
|
3月前
|
存储 缓存 NoSQL
Redis Quicklist 竟让内存占用狂降50%?
【10月更文挑战第11天】
62 2
|
3月前
|
Java 测试技术 Android开发
让星星⭐月亮告诉你,强软弱虚引用类型对象在内存足够和内存不足的情况下,面对System.gc()时,被回收情况如何?
本文介绍了Java中四种引用类型(强引用、软引用、弱引用、虚引用)的特点及行为,并通过示例代码展示了在内存充足和不足情况下这些引用类型的不同表现。文中提供了详细的测试方法和步骤,帮助理解不同引用类型在垃圾回收机制中的作用。测试环境为Eclipse + JDK1.8,需配置JVM运行参数以限制内存使用。
50 2
|
4月前
|
缓存 监控 NoSQL
阿里面试让聊一聊Redis 的内存淘汰(驱逐)策略
大家好,我是 V 哥。粉丝小 A 面试阿里时被问到 Redis 的内存淘汰策略问题,特此整理了一份详细笔记供参考。Redis 的内存淘汰策略决定了在内存达到上限时如何移除数据。希望这份笔记对你有所帮助!欢迎关注“威哥爱编程”,一起学习与成长。
|
4月前
|
存储 Prometheus NoSQL
Redis 内存突增时,如何定量分析其内存使用情况
【9月更文挑战第21天】当Redis内存突增时,可采用多种方法分析内存使用情况:1)使用`INFO memory`命令查看详细内存信息;2)借助`redis-cli --bigkeys`和RMA工具定位大键;3)利用Prometheus和Grafana监控内存变化;4)优化数据类型和存储结构;5)检查并调整内存碎片率。通过这些方法,可有效定位并解决内存问题,保障Redis稳定运行。
267 3
|
3月前
|
算法 Java
JVM进阶调优系列(3)堆内存的对象什么时候被回收?
堆对象的生命周期是咋样的?什么时候被回收,回收前又如何流转?具体又是被如何回收?今天重点讲对象GC,看完这篇就全都明白了。
|
4月前
|
缓存 NoSQL 算法
14)Redis 在内存用完时会怎么办?如何处理已过期的数据?
14)Redis 在内存用完时会怎么办?如何处理已过期的数据?
101 0
|
4月前
|
存储 缓存 NoSQL
Redis 过期删除策略与内存淘汰策略的区别及常用命令解析
Redis 过期删除策略与内存淘汰策略的区别及常用命令解析
88 0

热门文章

最新文章