m基于FPGA的多功能信号发生器verilog实现,包含testbench,可以调整波形类型,幅度,频率,初始相位等

简介: 使用Vivado 2019.2仿真的DDS信号发生器展示了正弦、方波、锯齿波和三角波的输出,并能调整幅度和频率。DDS技术基于高速累加器、查找表和DAC,通过频率控制字和初始相位调整产生各种波形。Verilog程序提供了一个TEST模块,包含时钟、复位、信号选择、幅度和频率控制输入,以生成不同波形。

1.算法仿真效果
vivado2019.2仿真结果如下:

f169e4bd406a66017c601bcda2b831cb_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

输出正弦,并改变幅度,频率等。
a89435b495da3faf2dcc7a38eb91ac9e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

输出方波,并改变幅度,频率等。

f664f1984fee65922d01e38803ec52d5_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

输出锯齿波,并改变幅度,频率等。

9cc369a895602f77c2ed66d67cd89deb_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

输出三角波,并改变幅度,频率等。

2.算法涉及理论知识概要
DDS(Direct Digital Synthesis,直接数字频率合成)技术是一种通过高性能数字计数器和查找表技术生成高精度、灵活可控的模拟信号的手段。DDS多功能信号发生器可以输出正弦波、方波、锯齿波、三角波等多种波形,并能够方便地调整波形类型、幅度、频率和初始相位。以下是DDS信号发生器的详细原理及其相关数学公式。

2.1 DDS基本原理
DDS信号发生器的核心部件包括高速累加器、波形存储器(查找表)和数模转换器(DAC)。

高速累加器:每次时钟周期,累加器都会将输入的频率控制字(Frequency Control Word, FCW)与前一周期的累加结果相加。频率控制字决定了输出信号的频率。

ACCUMULATOR:N(t)=N(t−1)+FCW

其中,N(t) 是在时间t 时刻的累加器输出,FCW 是频率控制字,决定了输出信号的频率。

波形存储器(查找表):累加器的输出值会被当作地址,用于查询预先存储在波形存储器中的幅度数据。对于正弦波,存储器中的数据是对正弦函数的离散采样;对于方波、锯齿波、三角波等其他波形,存储的是这些波形在固定区间内的离散值。

LUT:X[N(t)]

其中,X 是波形存储器,N(t) 作为地址,取出对应的幅度值。

2.2 波形参数调整

8a72c6dc6b7a96340cc37733e0763728_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   DDS多功能信号发生器利用高速累加器、波形存储器和数模转换器,通过调整频率控制字、波形存储器的内容以及累加器的初始值,可以灵活地生成各种波形,并精确控制其幅度、频率和初始相位。这项技术因其高度的灵活性和优异的频率分辨率,在通信、测量仪器、雷达、声纳等诸多领域有着广泛应用。

3.Verilog核心程序
````timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 2024/04/01 15:42:00
// Design Name:
// Module Name: TEST
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:

module TEST();
reg i_clk;
reg i_rst;
reg[1:0]i_sel;//信号选择00,01,10,11
reg[7:0]i_amp;//调整幅度,设置1~16,小于8缩小,大于8放大,等于8不变
reg[7:0]i_FK; //调整频率,1最慢,逐渐增加
reg[13:0]i_phase;//初始相位
wire signed[15:0]o_dout;

tops uut(
.i_clk (i_clk),
.i_rst (i_rst),
.i_sel (i_sel),//信号选择00,01,10,11
.i_amp (i_amp),
.i_FK (i_FK),
.i_phase (i_phase),
.o_dout (o_dout)
);

initial
begin
i_clk = 1'b1;
i_rst = 1'b1;
i_sel = 2'b11;
i_amp = 5'd10;
i_FK = 8'd1;
i_phase = 14'd0;

#1000
i_rst = 1'b0;
#500000
i_amp   = 5'd15;
i_FK    = 8'd4;

end
always #5 i_clk=~i_clk;
endmodule
```

相关文章
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于FPGA的SNN脉冲神经网络之LIF神经元verilog实现,包含testbench
本项目展示了 LIF(Leaky Integrate-and-Fire)神经元算法的实现与应用,含无水印运行效果预览。基于 Vivado2019.2 开发,完整代码配有中文注释及操作视频。LIF 模型模拟生物神经元特性,通过积分输入信号并判断膜电位是否达阈值产生脉冲,相较于 Hodgkin-Huxley 模型更简化,适合大规模神经网络模拟。核心程序片段示例,助您快速上手。
|
2月前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
1月前
|
算法 数据安全/隐私保护 异构计算
基于LSB最低有效位的音频水印嵌入提取算法FPGA实现,包含testbench和MATLAB对比
本项目展示了一种基于FPGA的音频水印算法,采用LSB(最低有效位)技术实现版权保护与数据追踪功能。使用Vivado2019.2和Matlab2022a开发,完整代码含中文注释及操作视频。算法通过修改音频采样点的最低有效位嵌入水印,人耳难以察觉变化。然而,面对滤波或压缩等攻击时,水印提取可能受影响。该项目运行效果无水印干扰,适合实时应用场景,核心逻辑简单高效,时间复杂度低。
|
19天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的2ASK+帧同步系统verilog开发,包含testbench,高斯信道,误码统计,可设置SNR
本内容展示了基于Vivado2019.2的算法仿真效果,包括设置不同信噪比(SNR=8db和20db)下的结果及整体波形。同时,详细介绍了2ASK调制解调技术的原理与实现,即通过改变载波振幅传输二进制信号,并提供数学公式支持。此外,还涉及帧同步理论,用于确定数据帧起始位置。最后,给出了Verilog核心程序代码,实现了2ASK解调与帧同步功能,结合DDS模块生成载波信号,完成信号处理流程。
25 0
|
1月前
|
编解码 算法 数据安全/隐私保护
基于FPGA的信号DM编解码实现,包含testbench和matlab对比仿真
本项目展示了DM编解码算法的实现与测试结果。FPGA测试结果显示为T1,Matlab仿真结果为T2。使用软件版本为Matlab 2022a和Vivado 2019.2。核心程序包含详细中文注释和操作视频。DM编解码通过比较信号样本差值进行编码,适用于音频等低频信号处理。硬件结构包括编码器(采样器、减法器、比较器)和解码器(解码器、积分器)。
|
3月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的变步长LMS自适应滤波器verilog实现,包括testbench
### 自适应滤波器仿真与实现简介 本项目基于Vivado2022a实现了变步长LMS自适应滤波器的FPGA设计。通过动态调整步长因子,该滤波器在收敛速度和稳态误差之间取得良好平衡,适用于信道均衡、噪声消除等信号处理应用。Verilog代码展示了关键模块如延迟单元和LMS更新逻辑。仿真结果验证了算法的有效性,具体操作可参考配套视频。
156 74
|
4月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16QAM调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现了16QAM基带通信系统,包括调制、信道仿真、解调及误码率统计模块。通过Vivado2019.2仿真,设置不同SNR(如8dB、12dB),验证了软解调相较于传统16QAM系统的优越性,误码率显著降低。系统采用Verilog语言编写,详细介绍了16QAM软解调的原理及实现步骤,适用于高性能数据传输场景。
233 69
|
4月前
|
移动开发 算法 数据安全/隐私保护
基于FPGA的QPSK调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的QPSK调制解调系统,通过Vivado 2019.2进行仿真,展示了在不同信噪比(SNR=1dB, 5dB, 10dB)下的仿真效果。与普通QPSK系统相比,该系统的软解调技术显著降低了误码率。文章还详细阐述了QPSK调制的基本原理、信号采样、判决、解调及软解调的实现过程,并提供了Verilog核心程序代码。
158 26
|
3月前
|
存储 编解码 算法
基于FPGA的直接数字频率合成器verilog实现,包含testbench
本项目基于Vivado 2019.2实现DDS算法,提供完整无水印运行效果预览。DDS(直接数字频率合成器)通过数字信号处理技术生成特定频率和相位的正弦波,核心组件包括相位累加器、正弦查找表和DAC。相位累加器在每个时钟周期累加频率控制字,正弦查找表根据相位值输出幅度,DAC将数字信号转换为模拟电压。项目代码包含详细中文注释及操作视频。
|
5月前
|
算法 异构计算
基于FPGA的4ASK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4-ASK调制解调系统的算法仿真效果、理论基础及Verilog核心程序。仿真在Vivado2019.2环境下进行,分别测试了SNR为20dB、15dB、10dB时的性能。理论部分概述了4-ASK的工作原理,包括调制、解调过程及其数学模型。Verilog代码实现了4-ASK调制器、加性高斯白噪声(AWGN)信道模拟、解调器及误码率计算模块。
140 8

热门文章

最新文章