第十五章 Python多进程与多线程

简介: 第十五章 Python多进程与多线程

15.1 multiprocessing

multiprocessing是多进程模块,多进程提供了任务并发性,能充分利用多核处理器。避免了GIL(全局解释锁)对资源的影响。

有以下常用类:

描述

Process(group=None, target=None, name=None, args=(), kwargs={}) 派生一个进程对象,然后调用start()方法启动

Pool(processes=None, initializer=None, initargs=())

返回一个进程池对象,processes进程池进程数量
Pipe(duplex=True) 返回两个连接对象由管道连接
Queue(maxsize=0) 返回队列对象,操作方法跟Queue.Queue一样
multiprocessing.dummy 这个库是用于实现多线程

Process()类有以下些方法:

run()
start() 启动进程对象
join([timeout]) 等待子进程终止,才返回结果。可选超时。
name 进程名字
is_alive() 返回进程是否存活
daemon 进程的守护标记,一个布尔值
pid 返回进程ID
exitcode 子进程退出状态码
terminate() 终止进程。在unix上使用SIGTERM信号,在windows上使用TerminateProcess()。

Pool()类有以下些方法:

apply(func, args=(), kwds={}) 等效内建函数apply()
apply_async(func, args=(), kwds={}, callback=None) 异步,等效内建函数apply()
map(func, iterable, chunksize=None) 等效内建函数map()
map_async(func, iterable, chunksize=None, callback=None) 异步,等效内建函数map()
imap(func, iterable, chunksize=1) 等效内建函数itertools.imap()
imap_unordered(func, iterable, chunksize=1) 像imap()方法,但结果顺序是任意的
close() 关闭进程池
terminate() 终止工作进程,垃圾收集连接池对象
join() 等待工作进程退出。必须先调用close()或terminate()

Pool.apply_async()和Pool.map_aysnc()又提供了以下几个方法:

get([timeout]) 获取结果对象里的结果。如果超时没有,则抛出TimeoutError异常
wait([timeout]) 等待可用的结果或超时
ready() 返回调用是否已经完成
successful()

举例:

1)简单的例子,用子进程处理函数

from multiprocessing import Process
import os
def worker(name):
    print name
    print 'parent process id:', os.getppid()
    print 'process id:', os.getpid()
if __name__ == '__main__':
    p = Process(target=worker, args=('function worker.',))
    p.start()
    p.join()
    print p.name
    
# python test.py
function worker.
parent process id: 9079
process id: 9080
Process-1 

Process实例传入worker函数作为派生进程执行的任务,用start()方法启动这个实例。

2)加以说明join()方法

from multiprocessing import Process
import os
def worker(n):
    print 'hello world', n
if __name__ == '__main__':
    print 'parent process id:', os.getppid()
    for n in range(5):
        p = Process(target=worker, args=(n,))
        p.start()
        p.join()
        print 'child process id:', p.pid
        print 'child process name:', p.name
        
# python test.py
parent process id: 9041
hello world 0
child process id: 9132
child process name: Process-1
hello world 1
child process id: 9133
child process name: Process-2
hello world 2
child process id: 9134
child process name: Process-3
hello world 3
child process id: 9135
child process name: Process-4
hello world 4
child process id: 9136
child process name: Process-5
# 把p.join()注释掉再执行
# python test.py
parent process id: 9041
child process id: 9125
child process name: Process-1
child process id: 9126
child process name: Process-2
child process id: 9127
child process name: Process-3
child process id: 9128
child process name: Process-4
hello world 0
hello world 1
hello world 3
hello world 2
child process id: 9129
child process name: Process-5
hello world 4 

可以看出,在使用join()方法时,输出的结果都是顺序排列的。相反是乱序的。因此join()方法是堵塞父进程,要等待当前子进程执行完后才会继续执行下一个子进程。否则会一直生成子进程去执行任务。

在要求输出的情况下使用join()可保证每个结果是完整的。

3)给子进程命名,方便管理

from multiprocessing import Process
import os, time
def worker1(n):
    print 'hello world', n
def worker2():
    print 'worker2...'
if __name__ == '__main__':
    print 'parent process id:', os.getppid()
    for n in range(3):
        p1 = Process(name='worker1', target=worker1, args=(n,))
        p1.start()
        p1.join()
        print 'child process id:', p1.pid
        print 'child process name:', p1.name
    p2 = Process(name='worker2', target=worker2)
    p2.start()
    p2.join()
    print 'child process id:', p2.pid
    print 'child process name:', p2.name
    
# python test.py
parent process id: 9041
hello world 0
child process id: 9248
child process name: worker1
hello world 1
child process id: 9249
child process name: worker1
hello world 2
child process id: 9250
child process name: worker1
worker2...
child process id: 9251
child process name: worker2 

4)设置守护进程,父进程退出也不影响子进程运行

from multiprocessing import Process
def worker1(n):
    print 'hello world', n
def worker2():
    print 'worker2...'
if __name__ == '__main__':
    for n in range(3):
        p1 = Process(name='worker1', target=worker1, args=(n,))
        p1.daemon = True
        p1.start()
        p1.join()
    p2 = Process(target=worker2)
    p2.daemon = False
    p2.start()
    p2.join() 

5)使用进程池

#!/usr/bin/python
# -*- coding: utf-8 -*-
from multiprocessing import Pool, current_process
import os, time, sys
def worker(n):
    print 'hello world', n
    print 'process name:', current_process().name  # 获取当前进程名字
    time.sleep(1)    # 休眠用于执行时有时间查看当前执行的进程
if __name__ == '__main__':
    p = Pool(processes=3)
    for i in range(8):
        r = p.apply_async(worker, args=(i,))
        r.get(timeout=5)  # 获取结果中的数据
    p.close()
    
# python test.py
hello world 0
process name: PoolWorker-1
hello world 1
process name: PoolWorker-2
hello world 2
process name: PoolWorker-3
hello world 3
process name: PoolWorker-1
hello world 4
process name: PoolWorker-2
hello world 5
process name: PoolWorker-3
hello world 6
process name: PoolWorker-1
hello world 7
process name: PoolWorker-2 

进程池生成了3个子进程,通过循环执行8次worker函数,进程池会从子进程1开始去处理任务,当到达最大进程时,会继续从子进程1开始。

在运行此程序同时,再打开一个终端窗口会看到生成的子进程:

# ps -ef |grep python
root      40244   9041  4 16:43 pts/3   00:00:00 python test.py
root      40245  40244  0 16:43 pts/3    00:00:00 python test.py
root      40246  40244  0 16:43 pts/3    00:00:00 python test.py
root      40247  40244  0 16:43 pts/3    00:00:00 python test.py 

6)进程池map()方法

map()方法是将序列中的元素通过函数处理返回新列表。

from multiprocessing import Pool
def worker(url):
    return 'http://%s' % url
urls = ['www.baidu.com', 'www.jd.com']
p = Pool(processes=2)
r = p.map(worker, urls)
p.close()
print r
# python test.py
['http://www.baidu.com', 'http://www.jd.com'] 

7)Queue进程间通信

multiprocessing支持两种类型进程间通信:Queue和Pipe。

Queue库已经封装到multiprocessing库中,在第十章 Python常用标准库已经讲解到Queue库使用,有需要请查看以前博文。

例如:一个子进程向队列写数据,一个子进程读取队列数据

#!/usr/bin/python
# -*- coding: utf-8 -*-
from multiprocessing import Process, Queue
# 写数据到队列
def write(q):
    for n in range(5):
        q.put(n)
        print 'Put %s to queue.' % n
# 从队列读数据
def read(q):
    while True:
        if not q.empty():
            value = q.get()
            print 'Get %s from queue.' % value
        else:
            break
if __name__ == '__main__':
    q = Queue()
    pw = Process(target=write, args=(q,))
    pr = Process(target=read, args=(q,))   
    pw.start()
    pw.join()
    pr.start()
    pr.join()
    
# python test.py
Put 0 to queue.
Put 1 to queue.
Put 2 to queue.
Put 3 to queue.
Put 4 to queue.
Get 0 from queue.
Get 1 from queue.
Get 2 from queue.
Get 3 from queue.
Get 4 from queue. 

8)Pipe进程间通信

from multiprocessing import Process, Pipe
def f(conn):
    conn.send([42, None, 'hello'])
    conn.close()
if __name__ == '__main__':
    parent_conn, child_conn = Pipe()
    p = Process(target=f, args=(child_conn,))
    p.start()
    print parent_conn.recv() 
    p.join()
    
# python test.py
[42, None, 'hello'] 

Pipe()创建两个连接对象,每个链接对象都有send()和recv()方法,

9)进程间对象共享

Manager类返回一个管理对象,它控制服务端进程。提供一些共享方式:Value()、Array()、list()、dict()、Event()等

创建Manger对象存放资源,其他进程通过访问Manager获取。

from multiprocessing import Process, Manager
def f(v, a, l, d):
    v.value = 100
    a[0] = 123
    l.append('Hello')
    d['a'] = 1
mgr = Manager()
v = mgr.Value('v', 0)
a = mgr.Array('d', range(5))
l = mgr.list()
d = mgr.dict()
p = Process(target=f, args=(v, a, l, d))
p.start()
p.join()
print(v)
print(a)
print(l)
print(d)
# python test.py
Value('v', 100)
array('d', [123.0, 1.0, 2.0, 3.0, 4.0])
['Hello']
{'a': 1} 

10)写一个多进程的例子

比如:多进程监控URL是否正常

from multiprocessing import Pool, current_process
import urllib2
urls = [
    'http://www.baidu.com',
    'http://www.jd.com',
    'http://www.sina.com',
    'http://www.163.com',
]
def status_code(url):
    print 'process name:', current_process().name
    try:
        req = urllib2.urlopen(url, timeout=5)
        return req.getcode()
    except urllib2.URLError:
        return
p = Pool(processes=4)
for url in urls:
    r = p.apply_async(status_code, args=(url,))
    if r.get(timeout=5) == 200:
        print "%s OK" %url
    else:
        print "%s NO" %url
        
# python test.py
process name: PoolWorker-1
http://www.baidu.com OK
process name: PoolWorker-2
http://www.jd.com OK
process name: PoolWorker-3
http://www.sina.com OK
process name: PoolWorker-4
http://www.163.com OK 


博客地址:http://lizhenliang.blog.51cto.com

QQ群:323779636(Shell/Python运维开发群


15.2 threading

threading模块类似于multiprocessing多进程模块,使用方法也基本一样。threading库是对thread库进行二次封装,我们主要用到Thread类,用Thread类派生线程对象。

1)使用Thread类实现多线程

from threading import Thread, current_thread
def worker(n):
    print 'thread name:', current_thread().name
    print 'hello world', n
    
for n in range(5):
    t = Thread(target=worker, args=(n, ))
    t.start()
    t.join()  # 等待主进程结束
    
# python test.py
thread name: Thread-1
hello world 0
thread name: Thread-2
hello world 1
thread name: Thread-3
hello world 2
thread name: Thread-4
hello world 3
thread name: Thread-5
hello world 4 

2)还有一种方式继承Thread类实现多线程,子类可以重写__init__和run()方法实现功能逻辑。

#!/usr/bin/python
# -*- coding: utf-8 -*-
from threading import Thread, current_thread
class Test(Thread):
    # 重写父类构造函数,那么父类构造函数将不会执行
    def __init__(self, n):
        Thread.__init__(self)
        self.n = n
    def run(self):
        print 'thread name:', current_thread().name
        print 'hello world', self.n
if __name__ == '__main__':
    for n in range(5):
        t = Test(n)
        t.start()
        t.join()
        
# python test.py
thread name: Thread-1
hello world 0
thread name: Thread-2
hello world 1
thread name: Thread-3
hello world 2
thread name: Thread-4
hello world 3
thread name: Thread-5
hello world 4 

3)Lock

from threading import Thread, Lock, current_thread
lock = Lock()
class Test(Thread):
    # 重写父类构造函数,那么父类构造函数将不会执行
    def __init__(self, n):
        Thread.__init__(self)
        self.n = n
    def run(self):
        lock.acquire()  # 获取锁
        print 'thread name:', current_thread().name
        print 'hello world', self.n
        lock.release()  # 释放锁
if __name__ == '__main__':
    for n in range(5):
        t = Test(n)
        t.start()
        t.join() 

众所周知,Python多线程有GIL全局锁,意思是把每个线程执行代码时都上了锁,执行完成后会自动释放GIL锁,意味着同一时间只有一个线程在运行代码。由于所有线程共享父进程内存、变量、资源,很容易多个线程对其操作,导致内容混乱。

当你在写多线程程序的时候如果输出结果是混乱的,这时你应该考虑到在不使用锁的情况下,多个线程运行时可能会修改原有的变量,导致输出不一样。

由此看来Python多线程是不能利用多核CPU提高处理性能,但在IO密集情况下,还是能提高一定的并发性能。也不必担心,多核CPU情况可以使用多进程实现多核任务。Python多进程是复制父进程资源,互不影响,有各自独立的GIL锁,保证数据不会混乱。能用多进程就用吧!


相关文章
|
1月前
|
调度 开发者 Python
深入浅出操作系统:进程与线程的奥秘
在数字世界的底层,操作系统扮演着不可或缺的角色。它如同一位高效的管家,协调和控制着计算机硬件与软件资源。本文将拨开迷雾,深入探索操作系统中两个核心概念——进程与线程。我们将从它们的诞生谈起,逐步剖析它们的本质、区别以及如何影响我们日常使用的应用程序性能。通过简单的比喻,我们将理解这些看似抽象的概念,并学会如何在编程实践中高效利用进程与线程。准备好跟随我一起,揭开操作系统的神秘面纱,让我们的代码运行得更加流畅吧!
|
1月前
|
消息中间件 Unix Linux
【C语言】进程和线程详解
在现代操作系统中,进程和线程是实现并发执行的两种主要方式。理解它们的区别和各自的应用场景对于编写高效的并发程序至关重要。
57 6
|
1月前
|
调度 开发者
深入理解:进程与线程的本质差异
在操作系统和计算机编程领域,进程和线程是两个核心概念。它们在程序执行和资源管理中扮演着至关重要的角色。本文将深入探讨进程与线程的区别,并分析它们在现代软件开发中的应用和重要性。
58 5
|
30天前
|
算法 调度 开发者
深入理解操作系统:进程与线程的管理
在数字世界的复杂编织中,操作系统如同一位精明的指挥家,协调着每一个音符的奏响。本篇文章将带领读者穿越操作系统的幕后,探索进程与线程管理的奥秘。从进程的诞生到线程的舞蹈,我们将一起见证这场微观世界的华丽变奏。通过深入浅出的解释和生动的比喻,本文旨在揭示操作系统如何高效地处理多任务,确保系统的稳定性和效率。让我们一起跟随代码的步伐,走进操作系统的内心世界。
|
1月前
|
调度 开发者
核心概念解析:进程与线程的对比分析
在操作系统和计算机编程领域,进程和线程是两个基本而核心的概念。它们是程序执行和资源管理的基础,但它们之间存在显著的差异。本文将深入探讨进程与线程的区别,并分析它们在现代软件开发中的应用和重要性。
56 4
|
2月前
|
数据采集 存储 数据处理
Python中的多线程编程及其在数据处理中的应用
本文深入探讨了Python中多线程编程的概念、原理和实现方法,并详细介绍了其在数据处理领域的应用。通过对比单线程与多线程的性能差异,展示了多线程编程在提升程序运行效率方面的显著优势。文章还提供了实际案例,帮助读者更好地理解和掌握多线程编程技术。
|
2月前
|
并行计算 数据处理 调度
Python中的并发编程:探索多线程与多进程的奥秘####
本文深入探讨了Python中并发编程的两种主要方式——多线程与多进程,通过对比分析它们的工作原理、适用场景及性能差异,揭示了在不同应用需求下如何合理选择并发模型。文章首先简述了并发编程的基本概念,随后详细阐述了Python中多线程与多进程的实现机制,包括GIL(全局解释器锁)对多线程的影响以及多进程的独立内存空间特性。最后,通过实例演示了如何在Python项目中有效利用多线程和多进程提升程序性能。 ####
|
2月前
|
监控 JavaScript 前端开发
python中的线程和进程(一文带你了解)
欢迎来到瑞雨溪的博客,这里是一位热爱JavaScript和Vue的大一学生分享技术心得的地方。如果你从我的文章中有所收获,欢迎关注我,我将持续更新更多优质内容,你的支持是我前进的动力!🎉🎉🎉
28 0
|
2月前
|
数据采集 Java Python
爬取小说资源的Python实践:从单线程到多线程的效率飞跃
本文介绍了一种使用Python从笔趣阁网站爬取小说内容的方法,并通过引入多线程技术大幅提高了下载效率。文章首先概述了环境准备,包括所需安装的库,然后详细描述了爬虫程序的设计与实现过程,包括发送HTTP请求、解析HTML文档、提取章节链接及多线程下载等步骤。最后,强调了性能优化的重要性,并提醒读者遵守相关法律法规。
69 0
|
6月前
|
运维 关系型数据库 MySQL
掌握taskset:优化你的Linux进程,提升系统性能
在多核处理器成为现代计算标准的今天,运维人员和性能调优人员面临着如何有效利用这些处理能力的挑战。优化进程运行的位置不仅可以提高性能,还能更好地管理和分配系统资源。 其中,taskset命令是一个强大的工具,它允许管理员将进程绑定到特定的CPU核心,减少上下文切换的开销,从而提升整体效率。
掌握taskset:优化你的Linux进程,提升系统性能