PYTHON用时变马尔可夫区制转换(MARKOV REGIME SWITCHING)自回归模型分析经济时间序列

简介: PYTHON用时变马尔可夫区制转换(MARKOV REGIME SWITCHING)自回归模型分析经济时间序列

原文链接:http://tecdat.cn/?p=22617


本文提供了一个在统计模型中使用马可夫转换模型模型的例子,来复现Kim和Nelson(1999)中提出的一些结果。它应用了Hamilton(1989)的滤波器和Kim(1994)的平滑器。

%matplotlib inline
import numpy as np
import pandas as pd
import statsmodels.api as sm
from pandas_datareader.data import DataReader
from datetime import datetime
 DataReader(start=datetime(1947, 1, 1), end=datetime(2013, 4, 1))


Hamilton (1989) 马尔可夫转换模型(_Markov -switching_ _model_)


这是对Hamilton(1989)介绍马可夫转换模型(_Markov -switching_ _model_)的开创性论文的复现。该模型是一个4阶的自回归模型,其中过程的平均值在两个区制之间切换。可以这样写。

每个时期,区制都根据以下的转移概率矩阵进行转换。

其中 pij是从区制 i 转移到区制 j 的概率。

该模型类别是时间序列部分中的MarkovAutoregression。为了创建这个模型,我们必须指定k\_regimes=2的区制数量,以及order=4的自回归阶数。默认模型还包括转换自回归系数,所以在这里我们还需要指定switch\_ar=False。

创建后,模型通过极大似然估计进行拟合。使用期望最大化(EM)算法的若干步骤找到好的起始参数,并应用准牛顿(BFGS)算法来快速找到最大值。

\[2\]:
#获取数据
hamilton= pd.read('gndata').iloc\[1:\]
# 绘制数据
hamilton.plot()
# 拟合模型
Markovreg(hamilton)

summary()

我们绘制了经过过滤和平滑处理的衰退概率。滤波指的是基于截至并包括时间tt(但不包括时间t+1,...,Tt+1,...,T)的数据对时间t的概率估计。平滑化是指使用样本中的所有数据对时间t的概率进行估计。

fig, axes = plt.subplots(2, figsize=(7,7))
ax = axes\[0\]
ax.plot(margl_prob\[0\])
ax = axes\[1\]
ax.plot(smoomarginal_pro\[0\])

根据估计的转移矩阵,我们可以计算出衰退与扩张的预期持续时间。


点击标题查阅往期内容


用机器学习识别不断变化的股市状况—隐马尔科夫模型(HMM)股票指数预测实战


01

02

03

04

print(expected_du)

在这种情况下,预计经济衰退将持续约一年(4个季度),扩张约两年半。

Kim, Nelson, and Startz (1998) 三状态方差转换模型。

这个模型展示了带有区制异方差(方差转换)和无平均效应的估计。

模型是:

由于没有自回归成分,这个模型可以用MarkovRegression类来拟合。由于没有平均效应,我们指定趋势='nc'。假设转换方差有三个区制,所以我们指定k\_regimes=3和switching\_variance=True(默认情况下,方差被假定为在不同区制下是相同的)。

raw = pd.read_table(ew ,engine='python')
# 绘制数据集
plot( figsize=(12, 3))

res_kns.summary()

下面我们绘制了处于每个区制中的概率;只有在少数时期,才有可能出现高_方差_区制。

fig, axes = plt.subplots(3, figsize=(10,7))
ax.plot(smoothed_proba\[0\])
ax.plot(smoothed_proba\[2\])
ax.plot(smoothed_proba\[3\])

Filardo (1994) 时变的转移概率


这个模型展示了用时变的转移概率进行估计。

在上述模型中,我们假设转移概率在不同时期是不变的。在这里,我们允许概率随着经济状况的变化而变化。否则,该模型就是Hamilton(1989)的马尔可夫自回归。

每个时期,区制现在都根据以下的时变转移概率矩阵进行转移。

其中 pij,tipij,t 是在 t 期间从区制 i 转移到区制 j 的概率,并定义为。

与其将转移概率作为最大似然法的一部分进行估计,不如估计回归系数βij。这些系数将转移概率与预先确定的或外生的变量xt-1向量联系起来。

\[9\]:
# 用标准差进行标准化
data\['p'\]\['1960-01-01':\].std() / data\['dlip'\]\[:'1959-12-01'\].std()
# 绘制数据
data\['dlip'\].plot( )
 
data\['dmdlleading'\].plot(  figsize=(13,3));

时变的转移概率是由exog_tvtp参数指定的。

这里我们展示了模型拟合的另一个特点--使用随机搜索的MLE起始参数。因为马尔科夫转换模型的特征往往是似然函数的许多局部最大值,执行初始优化步骤有助于找到最佳参数。

下面,我们规定对起始参数向量的20个随机扰动进行检查,并将最好的一个作为实际的起始参数。由于搜索的随机性,我们事先设置了随机数种子,以便结果复制。

markovreg(data, k=2, order=4)
fit(search=20)
summary()

下面我们绘制了经济运行在低生产状态下的平滑概率,并再次将NBER的衰退情况纳入其中进行比较。

ax.plot(smoo\_marg\_prob\[0\])

利用时间变化的转移概率,我们可以看到低生产状态的预期持续时间如何随时间变化。

exp_dura\[0\].plot( figsize=(12,3));

在经济衰退期间,低生产状态的预期持续时间要比经济扩张时高得多。

相关文章
|
2天前
|
机器学习/深度学习 数据采集 存储
使用Python实现智能农业灌溉系统的深度学习模型
使用Python实现智能农业灌溉系统的深度学习模型
25 6
|
3天前
|
数据可视化 开发者 Python
Python GUI开发:Tkinter与PyQt的实战应用与对比分析
【10月更文挑战第26天】本文介绍了Python中两种常用的GUI工具包——Tkinter和PyQt。Tkinter内置于Python标准库,适合初学者快速上手,提供基本的GUI组件和方法。PyQt基于Qt库,功能强大且灵活,适用于创建复杂的GUI应用程序。通过实战示例和对比分析,帮助开发者选择合适的工具包以满足项目需求。
27 7
|
2天前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
11 3
|
4天前
|
机器学习/深度学习 数据采集 算法框架/工具
使用Python实现深度学习模型:智能野生动物保护与监测
使用Python实现深度学习模型:智能野生动物保护与监测
19 5
|
3天前
|
存储 机器学习/深度学习 算法
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第26天】NumPy和SciPy是Python科学计算领域的两大核心库。NumPy提供高效的多维数组对象和丰富的数学函数,而SciPy则在此基础上提供了更多高级的科学计算功能,如数值积分、优化和统计等。两者结合使Python在科学计算中具有极高的效率和广泛的应用。
10 2
|
6天前
|
机器学习/深度学习 数据采集 算法框架/工具
使用Python实现智能生态系统监测与保护的深度学习模型
使用Python实现智能生态系统监测与保护的深度学习模型
29 4
|
3天前
|
机器学习/深度学习 数据采集 数据可视化
使用Python实现深度学习模型:智能植物生长监测与优化
使用Python实现深度学习模型:智能植物生长监测与优化
21 0
|
算法 Python
用Python实现马尔可夫链蒙特卡罗
本文通过用Python中的马尔可夫链蒙特卡罗实现了睡眠模型项目,并教会如何使用MCMC。
4512 0
|
10天前
|
安全 数据处理 开发者
Python中的多线程编程:从入门到精通
本文将深入探讨Python中的多线程编程,包括其基本原理、应用场景、实现方法以及常见问题和解决方案。通过本文的学习,读者将对Python多线程编程有一个全面的认识,能够在实际项目中灵活运用。
|
4天前
|
设计模式 开发者 Python
Python编程中的设计模式:工厂方法模式###
本文深入浅出地探讨了Python编程中的一种重要设计模式——工厂方法模式。通过具体案例和代码示例,我们将了解工厂方法模式的定义、应用场景、实现步骤以及其优势与潜在缺点。无论你是Python新手还是有经验的开发者,都能从本文中获得关于如何在实际项目中有效应用工厂方法模式的启发。 ###