【AI Agent系列】【阿里AgentScope框架】实战1:利用AgentScope实现动态创建Agent和自由组织讨论

简介: 【AI Agent系列】【阿里AgentScope框架】实战1:利用AgentScope实现动态创建Agent和自由组织讨论

大家好,我是 同学小张,持续学习C++进阶知识和AI大模型应用实战案例,持续分享,欢迎大家点赞+关注,共同学习和进步。


从实战中学习和拆解AgentScope框架的使用和知识。本文利用AgentScope框架实现的是 多智能体的自由讨论 。

代码参考:https://github.com/modelscope/agentscope/tree/main/examples/conversation_self_organizing


0. 实现效果

先上最终的实现效果,给大家一个直观的感受。本文实现的效果如下:

有多个Agent(例如案例中的 PhysicsTeacher物理老师、curious student好奇的学生、analytical student分析型学生),针对一个话题展开讨论,每个Agent轮流发言。

1. 需求拆解

要实现多智能体之间的自由讨论,需要实现以下内容:

(1)有多个对话智能体

(2)多个对话智能体之间的通信(数据流控制)

(3)本文要实现的是不固定的多智能体对话,也就是说,多智能体是动态创建的,因此有个Agent来组织讨论,例如本例中讨论的物理问题,该Agent需要根据这个物理问题创建相应的智能体(物理老师和各种学生等)

这么一看,是不是就觉得非常简单了?对话智能体(DialogAgent)和数据流控制(Pipeline)我们前面都已经深入学习过了,还不了解的可以去看我前面的AgentScope相关文章。

2. 代码实现

2.1 初始化AgentScope

AgentScope在使用前,需要先初始化配置,主要是将要使用的大模型和相关的API Key 设置一下:

import agentscope
model_configs = [
    {
        "model_type": "openai",
        "config_name": "gpt-3.5-turbo",
        "model_name": "gpt-3.5-turbo",
        # "api_key": "xxx",  # Load from env if not provided
        # "organization": "xxx",  # Load from env if not provided
        "generate_args": {
            "temperature": 0.5,
        },
    },
]
agentscope.init(model_configs=model_configs)

2.2 创建讨论的组织者

根据前面的需求分析,我们首先需要有一个Agent来根据问题动态生成讨论问题的Agent们。

这里使用一个对话智能体DialogAgent即可:

# init the self-organizing conversation
agent_builder = DialogAgent(
    name="agent_builder",
    sys_prompt="You're a helpful assistant.",
    model_config_name="gpt-3.5-turbo",
)

有了这个agent实例,可以通过传入Prompt和问题来获取参与讨论的Agents以及各Agents的设定。这里的Prompt是比较重要的,看下示例中的Prompt:

Act as a group discussion organizer. Please provide the suitable scenario for discussing this question, and list the roles of the people who need to participate in the discussion in order to answer this question, along with their system prompt to describe their characteristics.
The response must in the format of:
#scenario#: <discussion scenario>
#participants#:
* <participant1 type>: <characteristic description>
* <participant2 type>: <characteristic description>
Here are some examples.
Question: Joy can read 8 pages of a book in 20 minutes. How many hours will it take her to read 120 pages?
Answer:
#scenario#: grade school class discussion
#participants#:
* Instructor: Act as an instructor who is in a class group discussion to guide the student group discussion. Please encourage critical thinking. Encourage participants to think critically and challenge assumptions by asking thought-provoking questions or presenting different perspectives.
* broad-minded-student: Act as a student who is broad-minded and is open to trying new or different ways to solve problems. You are in a group discussion with other student under the guidance of the instructor.
* knowledgeable-student: Act as a knowledgeable student and discuss with others to retrieve more information about the topic. If you do not know the answer to a question, please do not share false information
Please give the discussion scenario and the corresponding participants for the following question:
Question: {question}
Answer:

Prompt里,要求要给出讨论的流程、讨论的参与者与讨论参与者各自的“system prompt”。

运行时,将Prompt与问题组合传给Agent:

query = "假设你眼睛的瞳孔直径为5毫米,你有一台孔径为50厘米的望远镜。望远镜能比你的眼睛多收集多少光?"
x = load_txt(
"D:\\GitHub\\LEARN_LLM\\agentscope\\start_0\\conversation_self_organizing\\agent_builder_instruct.txt",
).format(
    question=query,
)
x = Msg("user", x, role="user")
settings = agent_builder(x)

看下这个Agent的运行结果:

文字版运行结果:

tools:extract_scenario_and_participants:82 - {'Scenario': 'Physics class discussion on optics', 'Participants': {'PhysicsTeacher': 'Act as a physics teacher who is leading the discussion on optics. Your role is to facilitate the conversation, provide explanations, and ensure that the discussion stays focused on the topic of light collection and optics.', 'curious-student': 'Act as a student who is curious and eager to learn more about optics and light collection. You ask insightful questions and actively participate in the discussion to deepen your understanding.', 'analytical-student': 'Act as a student who is analytical and enjoys solving problems related to optics. You approach the question methodically and use logical reasoning to arrive at solutions.'}}

输出结果给出了 Scenario 以及该问题的 Participants参与者,参与者有 PhysicsTeacher、curious-student 和 analytical-student。并给出了这几个参与者的角色设定。

之后通过一个解析函数,将里面的角色和设定解析出来就可以用来动态创建这些Agent了。

def extract_scenario_and_participants(content: str) -> dict:
    result = {}
    # define regular expression
    scenario_pattern = r"#scenario#:\s*(.*)"
    participants_pattern = r"\*\s*([^:\n]+):\s*([^\n]+)"
    # search and extract scenario
    scenario_match = re.search(scenario_pattern, content)
    if scenario_match:
        result["Scenario"] = scenario_match.group(1).strip()
    # search and extract participants
    participants_matches = re.finditer(participants_pattern, content)
    participants_dict = {}
    for match in participants_matches:
        participant_type, characteristic = match.groups()
        participants_dict[
            participant_type.strip().replace(" ", "_")
        ] = characteristic.strip()
    result["Participants"] = participants_dict
    
    logger.info(result)
    return result
scenario_participants = extract_scenario_and_participants(settings["content"])

2.3 动态创建讨论者

有了参与者及其描述,直接用循环语句创建这些Agent:

# set the agents that participant the discussion
agents = [
    DialogAgent(
        name=key,
        sys_prompt=val,
        model_config_name="gpt-3.5-turbo",
    )
    for key, val in scenario_participants["Participants"].items()
]

2.4 开始讨论

这里用了 sequentialpipeline 顺序发言:

max_round = 2
msg = Msg("user", f"let's discuss to solve the question with chinese: {query}", role="user")
for i in range(max_round):
    msg = sequentialpipeline(agents, msg)

运行结果见文章刚开始的实现效果,实现讨论。

3. 总结

本文主要拆解了一个利用AgentScope框架实现的多智能体自由讨论案例,先由一个Agent根据问题生成讨论流程和讨论者,然后根据讨论者动态创建Agent。

主要的亮点在于:

(1)有一个Agent把控全局,生成流程和各参与者的描述

(2)动态创建讨论者Agent,这让这个系统有了更好的通用性,根据不同的问题有不同类型和不同数量的Agent会被创建。

值得借鉴。

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是 同学小张,持续学习C++进阶知识AI大模型应用实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • +v: jasper_8017 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:

相关文章
|
18天前
|
存储 人工智能 自然语言处理
AI经营|多Agent择优生成商品标题
商品标题中关键词的好坏是商品能否被主搜检索到的关键因素,使用大模型自动优化标题成为【AI经营】中的核心能力之一,本文讲述大模型如何帮助商家优化商品素材,提升商品竞争力。
AI经营|多Agent择优生成商品标题
|
12天前
|
人工智能 知识图谱
轻松搭建AI版“谁是卧底”游戏,muAgent框架让知识图谱秒变编排引擎,支持复杂推理+在线协同
蚂蚁集团推出muAgent,兼容现有市面各类Agent框架,同时可实现复杂推理、在线协同、人工交互、知识即用四大核心差异技术功能。
27 2
|
1月前
|
敏捷开发 机器学习/深度学习 数据采集
端到端优化所有能力,字节跳动提出强化学习LLM Agent框架AGILE
【10月更文挑战第23天】字节跳动研究团队提出AGILE框架,通过强化学习优化大型语言模型(LLM)在复杂对话任务中的表现。该框架将LLM作为核心决策模块,结合记忆、工具和专家咨询模块,实现智能体的自我进化。实验结果显示,AGILE智能体在ProductQA和MedMCQA数据集上优于GPT-4。
94 4
|
2月前
|
人工智能 安全 决策智能
OpenAI推出实验性“Swarm”框架,引发关于AI驱动自动化的争论
OpenAI推出实验性“Swarm”框架,引发关于AI驱动自动化的争论
|
2月前
|
人工智能 API 决策智能
swarm Agent框架入门指南:构建与编排多智能体系统的利器 | AI应用开发
Swarm是OpenAI在2024年10月12日宣布开源的一个实验性质的多智能体编排框架。其核心目标是让智能体之间的协调和执行变得更轻量级、更容易控制和测试。Swarm框架的主要特性包括轻量化、易于使用和高度可定制性,非常适合处理大量独立的功能和指令。【10月更文挑战第15天】
248 6
|
4月前
|
存储 人工智能
|
19天前
|
人工智能 算法 搜索推荐
清华校友用AI破解162个高数定理,智能体LeanAgent攻克困扰陶哲轩难题!
清华校友开发的LeanAgent智能体在数学推理领域取得重大突破,成功证明了162个未被人类证明的高等数学定理,涵盖抽象代数、代数拓扑等领域。LeanAgent采用“持续学习”框架,通过课程学习、动态数据库和渐进式训练,显著提升了数学定理证明的能力,为数学研究和教育提供了新的思路和方法。
36 3
|
20天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
74 4
|
2月前
|
Python 机器学习/深度学习 人工智能
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
【10月更文挑战第1天】本文通过构建一个简单的强化学习环境,演示了如何创建和训练智能体以完成特定任务。我们使用Python、OpenAI Gym和PyTorch搭建了一个基础的智能体,使其学会在CartPole-v1环境中保持杆子不倒。文中详细介绍了环境设置、神经网络构建及训练过程。此实战案例有助于理解智能体的工作原理及基本训练方法,为更复杂应用奠定基础。首先需安装必要库: ```bash pip install gym torch ``` 接着定义环境并与之交互,实现智能体的训练。通过多个回合的试错学习,智能体逐步优化其策略。这一过程虽从基础做起,但为后续研究提供了良好起点。
147 4
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
|
2月前
|
机器学习/深度学习 人工智能 算法
打造你的超级Agent智能体——在虚拟迷宫中智斗未知,解锁AI进化之谜的惊心动魄之旅!
【10月更文挑战第5天】本文介绍了一个基于强化学习的Agent智能体项目实战,通过控制Agent在迷宫环境中找到出口来完成特定任务。文章详细描述了环境定义、Agent行为及Q-learning算法的实现。使用Python和OpenAI Gym框架搭建迷宫环境,并通过训练得到的Q-table测试Agent表现。此项目展示了构建智能体的基本要素,适合初学者理解Agent概念及其实现方法。
96 9