【AI大模型应用开发】【AutoGPT系列】0. AutoGPT概念及原理介绍 - Agent开发框架及ReAct方法

简介: 【AI大模型应用开发】【AutoGPT系列】0. AutoGPT概念及原理介绍 - Agent开发框架及ReAct方法
  • 大家好,我是同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • +v: jasper_8017 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:


0. AutoGPT 概念 - AI Agent开发框架

AutoGPT是一个开源的AI Agent开发框架。它是一个由LLM提供动力的半自治代理,可以为您执行任何任务。只需给它设定一个或多个目标,它就会自动拆解成相对应的任务并自主运行,其运行过程无需或少需人工干预,能够根据GPT自主决策结果并结合外部资源执行相应操作,通过循环评估策略实时评估目标达成程度,来决定任务是否完成。

至于AI Agent是什么,我在前面的文章中已经详细介绍过,感兴趣的可以去看下这两篇文章:

简单来说,Agent = LLM+观察+思考+行动+记忆,将大语言模型作为一个推理引擎。给定一个任务,Agent自动生成完成任务所需的步骤,执行相应动作(例如选择并调用工具),直到任务完成。经典的概念图如下:

开源项目地址:https://github.com/Significant-Gravitas/AutoGPT

论文地址:https://arxiv.org/pdf/2306.02224.pdf

1. AutoGPT原理 - ReAct

AutoGPT的基本原理非常简单:让LLM一遍又一遍地决定要做什么,同时将其操作的结果反馈到提示中,也就是不断地“思考 + 行动”。这使得程序能够迭代地、增量地朝着其目标工作。 这也是Agent的基本原理。这种“思考 + 行动”的方式有一个官方的名字 - ReAct。

ReAct:Reason + Act的组合简写。具体参考这篇论文:https://arxiv.org/pdf/2210.03629.pdf

ReAct论文中,作者对同一个问题,对比了不同驱动大模型方式的结果(如下图):

  • a:标准Prompt,只给大模型最原始的问题,答案错误。
  • b:思维链方式(CoT),模型给出了推理过程,但答案还是错误的,这就是大模型本身的缺陷,它不可能知道所有的知识。有些大模型不知道的知识还是需要通过行动从外部获取信息。
  • c:只有行动(Act-Only),模型只是进行了一堆检索动作,并没有总结和思考答案应该是什么。
  • d:ReAct方式,采用先思考下一步干什么,然后再干,最后正确得到了结果。

    下面我们回顾一下之前学习LangChain agents模块中的运行案例,来看下ReAct的具体过程。

上面运行过程其实就是ReAct的过程:

(1)(思考 · Think Reason)先总结了任务和思考了步骤:检索当前日期,然后检索这个日期上发生的历史事件

(2)(行动 · Act)执行检索当前日期的步骤:Action是Search,输入是“今天的日期”

(3)得到了今天的日期:Observation的结果

(4)(思考 · Think Reason)再一次思考:我现在已经知道了当前日期

(5)(行动 · Act)执行第二步:Action是Search,输入是“历史上的今天发生了什么大事”

(6)得到了第二步的结果

(7)(思考 · Think Reason)再思考:知道了历史上的今天发生了什么

(8)(行动 · Act)总结输出最终回复

简单概括:思考 —> 行动 —> 得到结果 —> 思考 —> 行动 —> 得到结果 —> … —> 思考 —> 行动 —> 总结

2. AutoGPT具有的能力

  • 互联网搜索
  • 长短期记忆管理
  • 调用大模型进行文本生成
  • 存储和总结文件
  • 插件扩展:AutoGPT 可以根据不同的应用场景和用户需求进行定制化的功能增强以及使得 AutoGPT 可以与其他工具和服务进行无缝集成。

3. 总结与思考

本文我们主要了解AutoGPT是什么,以及它背后的实现原理。AutoGPT是实验性的,虽然还不成熟,但其实现思想非常值得借鉴。

AutoGPT提供了Agent的全功能,但更多的是作为一个Agent开发框架来使用。官方也鼓励用户在此架构基础上开发自己特有的或针对特定功能的Agent,从而形成AutoGPT的生态。

4. 参考

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • +v: jasper_8017 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:

相关文章
|
1月前
|
人工智能 开发框架 安全
Smolagents:三行代码就能开发 AI 智能体,Hugging Face 开源轻量级 Agent 构建库
Smolagents 是 Hugging Face 推出的轻量级开源库,旨在简化智能代理的构建过程,支持多种大语言模型集成和代码执行代理功能。
307 69
Smolagents:三行代码就能开发 AI 智能体,Hugging Face 开源轻量级 Agent 构建库
|
1天前
|
人工智能 自然语言处理 人机交互
Social Media Agent:告别文案焦虑!AI自动生成高转化帖子,输入URL快速生成爆款文案
Social Media Agent 是一款由 LangChain 推出的 AI 社交媒体内容管理工具,支持 Twitter 和 LinkedIn 平台,能快速生成高质量的帖子。
41 17
Social Media Agent:告别文案焦虑!AI自动生成高转化帖子,输入URL快速生成爆款文案
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
Agent Laboratory:AI自动撰写论文,AMD开源自动完成科研全流程的多智能体框架
Agent Laboratory 是由 AMD 和约翰·霍普金斯大学联合推出的自主科研框架,基于大型语言模型,能够加速科学发现、降低成本并提高研究质量。
248 23
Agent Laboratory:AI自动撰写论文,AMD开源自动完成科研全流程的多智能体框架
|
6天前
|
人工智能 负载均衡 搜索推荐
谷歌发布双思维AI Agent:像人类一样思考,重大技术突破!
谷歌近日推出基于“快慢思维”理论的双思维AI Agent系统,模仿人类大脑的两种思维模式:快速直观的Talker(系统1)和深思熟虑的Reasoner(系统2)。Talker负责日常对话与快速响应,Reasoner则处理复杂推理任务。该系统模块化设计,灵活高效,已在睡眠教练等场景中展现应用潜力,但仍面临工作负载平衡与推理准确性等挑战。论文详情见:https://arxiv.org/abs/2410.08328v1
31 1
|
1月前
|
存储 人工智能 自然语言处理
AI Agent与SaaS工具协同发展的未来:企业智能化的全新范式
AI Agent以自主性和智能化为核心,适合复杂任务的动态执行;而SaaS工具则注重服务的完整性和易用性,适合标准化业务需求。
125 14
AI Agent与SaaS工具协同发展的未来:企业智能化的全新范式
|
1月前
|
机器学习/深度学习 人工智能 算法
FinRobot:开源的金融专业 AI Agent,提供市场预测、报告分析和交易策略等金融解决方案
FinRobot 是一个开源的 AI Agent 平台,专注于金融领域的应用,通过大型语言模型(LLMs)构建复杂的金融分析和决策工具,提供市场预测、文档分析和交易策略等多种功能。
236 13
FinRobot:开源的金融专业 AI Agent,提供市场预测、报告分析和交易策略等金融解决方案
|
1月前
|
人工智能 自然语言处理 API
用AI Agent做一个法律咨询助手,罗老看了都直呼内行 feat.通义千问大模型&阿里云百炼平台
本视频介绍如何使用通义千问大模型和阿里云百炼平台创建一个法律咨询助手AI Agent。通过简单配置,无需编写代码或训练模型,即可快速实现智能问答功能。演示包括创建应用、配置知识库、上传民法典文档、构建知识索引等步骤。最终,用户可以通过API调用集成此AI Agent到现有系统中,提供专业的法律咨询服务。整个过程简便高效,适合快速搭建专业领域的小助手。
219 22
|
1月前
|
存储 人工智能 开发框架
Eliza:TypeScript 版开源 AI Agent 开发框架,快速搭建智能、个性的 Agents 系统
Eliza 是一个开源的多代理模拟框架,支持多平台连接、多模型集成,能够快速构建智能、高效的AI系统。
197 8
Eliza:TypeScript 版开源 AI Agent 开发框架,快速搭建智能、个性的 Agents 系统
|
2月前
|
人工智能 开发框架 算法
Qwen-Agent:阿里通义开源 AI Agent 应用开发框架,支持构建多智能体,具备自动记忆上下文等能力
Qwen-Agent 是阿里通义开源的一个基于 Qwen 模型的 Agent 应用开发框架,支持指令遵循、工具使用、规划和记忆能力,适用于构建复杂的智能代理应用。
614 10
Qwen-Agent:阿里通义开源 AI Agent 应用开发框架,支持构建多智能体,具备自动记忆上下文等能力
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
Gemini 2.0:谷歌推出的原生多模态输入输出 + Agent 为核心的 AI 模型
谷歌最新推出的Gemini 2.0是一款原生多模态输入输出的AI模型,以Agent技术为核心,支持多种数据类型的输入与输出,具备强大的性能和多语言音频输出能力。本文将详细介绍Gemini 2.0的主要功能、技术原理及其在多个领域的应用场景。
403 20
Gemini 2.0:谷歌推出的原生多模态输入输出 + Agent 为核心的 AI 模型