【AI大模型应用开发】【AutoGPT系列】0. AutoGPT概念及原理介绍 - Agent开发框架及ReAct方法

简介: 【AI大模型应用开发】【AutoGPT系列】0. AutoGPT概念及原理介绍 - Agent开发框架及ReAct方法
  • 大家好,我是同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • +v: jasper_8017 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:


0. AutoGPT 概念 - AI Agent开发框架

AutoGPT是一个开源的AI Agent开发框架。它是一个由LLM提供动力的半自治代理,可以为您执行任何任务。只需给它设定一个或多个目标,它就会自动拆解成相对应的任务并自主运行,其运行过程无需或少需人工干预,能够根据GPT自主决策结果并结合外部资源执行相应操作,通过循环评估策略实时评估目标达成程度,来决定任务是否完成。

至于AI Agent是什么,我在前面的文章中已经详细介绍过,感兴趣的可以去看下这两篇文章:

简单来说,Agent = LLM+观察+思考+行动+记忆,将大语言模型作为一个推理引擎。给定一个任务,Agent自动生成完成任务所需的步骤,执行相应动作(例如选择并调用工具),直到任务完成。经典的概念图如下:

开源项目地址:https://github.com/Significant-Gravitas/AutoGPT

论文地址:https://arxiv.org/pdf/2306.02224.pdf

1. AutoGPT原理 - ReAct

AutoGPT的基本原理非常简单:让LLM一遍又一遍地决定要做什么,同时将其操作的结果反馈到提示中,也就是不断地“思考 + 行动”。这使得程序能够迭代地、增量地朝着其目标工作。 这也是Agent的基本原理。这种“思考 + 行动”的方式有一个官方的名字 - ReAct。

ReAct:Reason + Act的组合简写。具体参考这篇论文:https://arxiv.org/pdf/2210.03629.pdf

ReAct论文中,作者对同一个问题,对比了不同驱动大模型方式的结果(如下图):

  • a:标准Prompt,只给大模型最原始的问题,答案错误。
  • b:思维链方式(CoT),模型给出了推理过程,但答案还是错误的,这就是大模型本身的缺陷,它不可能知道所有的知识。有些大模型不知道的知识还是需要通过行动从外部获取信息。
  • c:只有行动(Act-Only),模型只是进行了一堆检索动作,并没有总结和思考答案应该是什么。
  • d:ReAct方式,采用先思考下一步干什么,然后再干,最后正确得到了结果。

    下面我们回顾一下之前学习LangChain agents模块中的运行案例,来看下ReAct的具体过程。

上面运行过程其实就是ReAct的过程:

(1)(思考 · Think Reason)先总结了任务和思考了步骤:检索当前日期,然后检索这个日期上发生的历史事件

(2)(行动 · Act)执行检索当前日期的步骤:Action是Search,输入是“今天的日期”

(3)得到了今天的日期:Observation的结果

(4)(思考 · Think Reason)再一次思考:我现在已经知道了当前日期

(5)(行动 · Act)执行第二步:Action是Search,输入是“历史上的今天发生了什么大事”

(6)得到了第二步的结果

(7)(思考 · Think Reason)再思考:知道了历史上的今天发生了什么

(8)(行动 · Act)总结输出最终回复

简单概括:思考 —> 行动 —> 得到结果 —> 思考 —> 行动 —> 得到结果 —> … —> 思考 —> 行动 —> 总结

2. AutoGPT具有的能力

  • 互联网搜索
  • 长短期记忆管理
  • 调用大模型进行文本生成
  • 存储和总结文件
  • 插件扩展:AutoGPT 可以根据不同的应用场景和用户需求进行定制化的功能增强以及使得 AutoGPT 可以与其他工具和服务进行无缝集成。

3. 总结与思考

本文我们主要了解AutoGPT是什么,以及它背后的实现原理。AutoGPT是实验性的,虽然还不成熟,但其实现思想非常值得借鉴。

AutoGPT提供了Agent的全功能,但更多的是作为一个Agent开发框架来使用。官方也鼓励用户在此架构基础上开发自己特有的或针对特定功能的Agent,从而形成AutoGPT的生态。

4. 参考

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • +v: jasper_8017 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:

相关文章
|
18天前
|
人工智能 运维 Java
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
本文基于Apache Flink PMC成员宋辛童在Community Over Code Asia 2025的演讲,深入解析Flink Agents项目的技术背景、架构设计与应用场景。该项目聚焦事件驱动型AI智能体,结合Flink的实时处理能力,推动AI在工业场景中的工程化落地,涵盖智能运维、直播分析等典型应用,展现其在AI发展第四层次——智能体AI中的重要意义。
271 22
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
AI Compass前沿速览:IndexTTS2–B站、HuMo、Stand-In视觉生成框架、Youtu-GraphRAG、MobileLLM-R1–Meta、PP-OCRv5
AI Compass前沿速览:IndexTTS2–B站、HuMo、Stand-In视觉生成框架、Youtu-GraphRAG、MobileLLM-R1–Meta、PP-OCRv5
108 10
AI Compass前沿速览:IndexTTS2–B站、HuMo、Stand-In视觉生成框架、Youtu-GraphRAG、MobileLLM-R1–Meta、PP-OCRv5
|
11天前
|
人工智能 Java 开发者
阿里出手!Java 开发者狂喜!开源 AI Agent 框架 JManus 来了,初次见面就心动~
JManus是阿里开源的Java版OpenManus,基于Spring AI Alibaba框架,助力Java开发者便捷应用AI技术。支持多Agent框架、网页配置、MCP协议及PLAN-ACT模式,可集成多模型,适配阿里云百炼平台与本地ollama。提供Docker与源码部署方式,具备无限上下文处理能力,适用于复杂AI场景。当前仍在完善模型配置等功能,欢迎参与开源共建。
381 1
阿里出手!Java 开发者狂喜!开源 AI Agent 框架 JManus 来了,初次见面就心动~
|
1月前
|
人工智能 自然语言处理 机器人
AI Compass前沿速览:Jetson Thor英伟达AI计算、Gemini 2.5 Flash Image、Youtu腾讯智能体框架、Wan2.2-S2V多模态视频生成、SpatialGen 3D场景生成模型
AI Compass前沿速览:Jetson Thor英伟达AI计算、Gemini 2.5 Flash Image、Youtu腾讯智能体框架、Wan2.2-S2V多模态视频生成、SpatialGen 3D场景生成模型
AI Compass前沿速览:Jetson Thor英伟达AI计算、Gemini 2.5 Flash Image、Youtu腾讯智能体框架、Wan2.2-S2V多模态视频生成、SpatialGen 3D场景生成模型
|
24天前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
305 109
|
30天前
|
存储 人工智能 自然语言处理
告别文字乱码!全新文生图模型Qwen-Image来咯
通义千问团队开源了Qwen-Image,一个20B参数的MMDiT模型,具备卓越的文本渲染和图像编辑能力。支持复杂中英文文本生成与自动布局,适用于多场景图像生成与编辑任务,已在魔搭社区与Hugging Face开源。
353 2
|
1月前
|
文字识别 算法 语音技术
基于模型蒸馏的大模型文案生成最佳实践
本文介绍了基于模型蒸馏技术优化大语言模型在文案生成中的应用。针对大模型资源消耗高、部署困难的问题,采用EasyDistill算法框架与PAI产品,通过SFT和DPO算法将知识从大型教师模型迁移至轻量级学生模型,在保证生成质量的同时显著降低计算成本。内容涵盖教师模型部署、训练数据构建及学生模型蒸馏优化全过程,助力企业在资源受限场景下实现高效文案生成,提升用户体验与业务增长。
347 23
|
1月前
|
人工智能 JavaScript 测试技术
Cradle:颠覆AI Agent 操作本地软件,AI驱动的通用计算机控制框架,如何让基础模型像人一样操作你的电脑?
Cradle 是由 BAAI‑Agents 团队开源的通用计算机控制(GCC)多模态 AI Agent 框架,具备视觉输入、键鼠操作输出、自主学习与反思能力,可操作各类本地软件及游戏,实现任务自动化与复杂逻辑执行。
187 6

热门文章

最新文章