【AI的未来 - AI Agent系列】【MetaGPT】4.1 细说我在ActionNode实战中踩的那些坑

简介: 【AI的未来 - AI Agent系列】【MetaGPT】4.1 细说我在ActionNode实战中踩的那些坑

上篇文章 【AI的未来 - AI Agent系列】【MetaGPT】4. ActionNode从理论到实战 中我们学习了MetaGPT中ActionNode的理论和基本用法,跑通了一个简单程序。

原理和代码实现都很简单,但是谁知道当时我遇到了多少坑… 本文带你看看我在上文中遇到的坑,希望能帮到你!

下面说下我遇到的坑:

1. MetaGPT = 0.5.2 版本的坑

听信了官方教程中的MetaGPT版本推荐,我之前的学习和实战都使用了0.5.2版本,所以一开始,ActionNode的学习也使用的此版本。

1.1 坑一:cannot import name “ActionNode” from “metagpt.actions.action”

  • 不知道为什么0.5.2版本无法从"metagpt.actions.action"导入ActionNode,看源码中,action_nodes.py是存在的

  • 解决方案:改为从 metagpt.actions.action_node 导入 ActionNode
# from metagpt.actions.action import Action, ActionNode
from metagpt.actions.action import Action
from metagpt.actions.action_node import ActionNode

1.2 坑二:simple_fill 没有参数 schema

  • 查看0.5.2版本的源码,simple_fill 的输入参数还叫 ‘to’,不叫 ‘schema’

  • 解决方案:schema 改为 to
# child = await i.simple_fill(schema=schema, mode=mode)
child = await i.simple_fill(to=schema, mode=mode)

1.3 坑三:ActionNode一直在循环执行,

如下图:一直在输出,这个都是ActionNode内的打印。

这个坑,是在ActionNode中循环,退不到我的代码中,所以我无从下手解决。促使了我升级到最新github代码… 后来我在高版本中遇到类似问题,好像是因为结果校验不通过,触发了重试。

2. 升级成 MetaGPT GitHub最新源码(2024-01-16)之后的坑

2.1 坑一:no attribute ‘_rc’

  • 从0.6版本开始,_rc这种成员变量都换成了不带下划线的:‘rc’
  • 解决方案:将 ‘_rc’ 全部换成 ‘rc’

2.2 坑二:no attribute ‘_states’

  • 解决方法同’rc’,将’_states’ 改为 ‘states’

2.3 坑三:‘gpt-4-1106-preview’ does not exist or you do not have access to it

  • 原因:前面讲过,MetaGPT读取配置的顺序:key.yaml > config.yaml > 环境变量。当我升级到github最新代码,源码编译后,源码中存在了config.yaml文件,里面默认的配置是gpt4。MetaGPT默认使用了config.yaml,我的环境变量便被忽略了。
  • 解决方案:在config.yaml中设置自己的配置。或者新建一个key.yaml来写自己的配置

2.4 坑四:A non-annotated attribute was detected: ‘input_num = 0’

这个是因为升级0.6版本后,0.6版本的校验更加严格,这类内的成员变量必须显式声明类型,否则会报错。

  • 解决方案
class SimplePrint(Action):
    input_num: int = 0 ######## <------ 加上这一句,显式声明变量类型
    def __init__(self, name="SimplePrint", input_num:int=0):
        super().__init__()
        self.input_num = input_num

还有几个坑忘记截图了… 不过上面也基本够了,应该能帮你省不少事儿~~~

相关文章
|
3月前
|
人工智能 运维 Java
Spring AI Alibaba Admin 开源!以数据为中心的 Agent 开发平台
Spring AI Alibaba Admin 正式发布!一站式实现 Prompt 管理、动态热更新、评测集构建、自动化评估与全链路可观测,助力企业高效构建可信赖的 AI Agent 应用。开源共建,现已上线!
4561 71
|
3月前
|
人工智能 搜索推荐 数据可视化
当AI学会“使用工具”:智能体(Agent)如何重塑人机交互
当AI学会“使用工具”:智能体(Agent)如何重塑人机交互
428 115
|
3月前
|
人工智能 自然语言处理 安全
从工具到伙伴:AI代理(Agent)是下一场革命
从工具到伙伴:AI代理(Agent)是下一场革命
368 117
|
3月前
|
人工智能 定位技术 API
智能体(Agent):AI不再只是聊天,而是能替你干活
智能体(Agent):AI不再只是聊天,而是能替你干活
1022 99
|
4月前
|
人工智能 自然语言处理 API
快速集成GPT-4o:下一代多模态AI实战指南
快速集成GPT-4o:下一代多模态AI实战指南
444 101
|
3月前
|
人工智能 缓存 运维
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
本文介绍联调造数场景下的AI应用演进:从单Agent模式到多Agent协同的架构升级。针对复杂指令执行不准、响应慢等问题,通过意图识别、工具引擎、推理执行等多Agent分工协作,结合工程化手段提升准确性与效率,并分享了关键设计思路与实践心得。
629 20
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
|
人工智能 Cloud Native 搜索推荐
【2025云栖大会】阿里云AI搜索年度发布:开启Agent时代,重构搜索新范式
2025云栖大会阿里云AI搜索专场上,发布了年度AI搜索技术与产品升级成果,推出Agentic Search架构创新与云原生引擎技术突破,实现从“信息匹配”到“智能问题解决”的跨越,支持多模态检索、百亿向量处理,助力企业降本增效,推动搜索迈向主动服务新时代。
476 0
|
3月前
|
存储 监控 算法
1688 图片搜索逆向实战:CLIP 多模态融合与特征向量落地方案
本文分享基于CLIP模型与逆向工程实现1688图片搜同款的实战方案。通过抓包分析破解接口签名,结合CLIP多模态特征提取与Faiss向量检索,提升搜索准确率至91%,单次响应低于80ms,日均选品效率提升4倍,全程合规可复现。
|
3月前
|
存储 人工智能 前端开发
超越问答:深入理解并构建自主决策的AI智能体(Agent)
如果说RAG让LLM学会了“开卷考试”,那么AI智能体(Agent)则赋予了LLM“手和脚”,使其能够思考、规划并与真实世界互动。本文将深入剖析Agent的核心架构,讲解ReAct等关键工作机制,并带你一步步构建一个能够调用外部工具(API)的自定义Agent,开启LLM自主解决复杂任务的新篇章。
649 6
|
4月前
|
机器学习/深度学习 算法 数据可视化
从零开始训练推理模型:GRPO+Unsloth改造Qwen实战指南
推理型大语言模型兴起,通过先思考再作答提升性能。本文介绍GRPO等强化学习算法,详解其原理并动手用Qwen2.5-3B训练推理模型,展示训练前后效果对比,揭示思维链生成的实现路径。
607 2
从零开始训练推理模型:GRPO+Unsloth改造Qwen实战指南

热门文章

最新文章