【AI大模型应用开发】1.0 Prompt Engineering(提示词工程)- 典型构成、原则与技巧,代码中加入Prompt

简介: 【AI大模型应用开发】1.0 Prompt Engineering(提示词工程)- 典型构成、原则与技巧,代码中加入Prompt

从这篇文章开始,我们就正式开始学习AI大模型应用开发的相关知识了。首先是提示词工程(Prompt Engineering)。

0. 什么是提示词(Prompt)

AI大模型火了也已经有一年多了,相信大家或多或少都听过或见过一个词叫“Prompt”,这就是提示词。

用户给大模型输入一个Prompt,大模型会根据你的Prompt给出一个回复,这是目前为止,最常用的使用大模型的方法。网络上很多号称“不用编程,轻松实现自己的应用、助理”等,都是基于Prompt来做的。即使是需要通过编程的方式来使用大模型达到自己需求的,过程中也会大量使用Prompt,将Prompt固化到程序中,作为“代码”的一部分

所以,在现在的AI时代,Prompt也可以看作是一门【编程语言】,最近新兴了一个职业叫做【提示词工程师】,也就类似是AI时代的程序员

现在Prompt工程并没有形成一套完整的标准化体系,网络上关于如何使用Prompt的文章也是铺天盖地,非常杂乱,让人眼花缭乱。因为本人想以实战为主,因此本文只是总结一下Prompt的最基本构成和原则

重要提醒

  • Promt是一个需要不断优化的过程,没有哪一篇文章或哪一个Prompt是适用于所有场景,或者拿来直接可用的。
  • 即使同一个场景,相同的Prompt,不同的大模型之间也会效果不同。如果换了大模型,提示词大概率需要重新优化
  • 所以不要光看网上的什么【最佳实践】,还是要下场实操,在不断迭代中学会优化Prompt的方法,才是最重要的。

1. 为什么Prompt会起作用 - 大模型工作原理

简要概括:它只是根据上文,猜下一个词的概率,在前几个概率大的词中选择一个输出。

2. Prompt的典型构成、原则与技巧

3. 开始使用Prompt

如果不会编程,或不想写代码,可以直接在AI软件中使用Prompt,例如:

  • ChatGPT

  • 文心一言

4. 代码中加入Prompt

4.1 OpenAI API解释

下面是上篇文章【AI大模型应用开发】0. 开篇,用OpenAI API写个Hello World !我们的“Hello World”程序,里面包含了一个函数chat.completions.create

from openai import OpenAI
# 加载 .env 到环境变量
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
client = OpenAI()
response = client.chat.completions.create(
    model="gpt-3.5-turbo-1106",
    messages=[
        {
            "role": "user",
            "content": "你是谁?"
        }
    ],
)
print(response.choices[0].message.content)

该函数有几个重要参数解释下:

  • model:用来指定使用哪个模型,例如:gpt-3.5-turbo-1106
  • messages:传入大模型的prompt,prompt有三种角色:
  • system:系统指令,最重要,用于初始化GPT行为,以及规定GPT的角色、背景和后续行为模式。system是主提示,可以进行更加详细的设置。
  • user: 用户输入的信息。
  • assistant: 机器回复,由 API 根据 system 和 user 消息自动生成的。
  • temperature:参数值越小,模型就会返回越确定的一个结果。如果调高该参数值,大语言模型可能会返回更随机、创意的结果,如诗歌、写作等,可以适当提高。
  • max_token:控制了输入和输出的总的token上限,要求我们的prompt不能太长,或者控制上下文轮次!(给你估算成本和节省成本用的)
  • Top_p:与 temperature 一起称为核采样的技术,可以用来控制模型返回结果的真实性。如果你需要准确和事实的答案,就把参数值调低。如果你想要更多样化的答案,就把参数值调高一些。

Temperature和Top_p,一般建议是改变其中一个参数就行,不用两个都调整。调了效果也不一定显著;

本篇文章就先写到这里,下篇文章我们开始在代码中将Prompt用起来,并尝试将一些技巧加进去看下效果。


从今天开始,持续学习,开始搞事情。踩坑不易,欢迎关注我,围观我!

有任何问题,欢迎+vx:jasper_8017,我也是个小白,期待与志同道合的朋友一起讨论,共同进步!

相关文章
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
17天前
|
人工智能 自然语言处理 机器人
文档智能与RAG技术如何提升AI大模型的业务理解能力
随着人工智能的发展,AI大模型在自然语言处理中的应用日益广泛。文档智能和检索增强生成(RAG)技术的兴起,为模型更好地理解和适应特定业务场景提供了新方案。文档智能通过自动化提取和分析非结构化文档中的信息,提高工作效率和准确性。RAG结合检索机制和生成模型,利用外部知识库提高生成内容的相关性和准确性。两者的结合进一步增强了AI大模型的业务理解能力,助力企业数字化转型。
74 3
|
5天前
|
人工智能 自然语言处理 算法
具身智能高校实训解决方案 ----从AI大模型+机器人到通用具身智能
在具身智能的发展历程中,AI 大模型的出现成为了关键的推动力量。高校作为培养未来科技人才的摇篮,需要紧跟这一前沿趋势,开展具身智能实训课程。通过将 AI 大模型与具备 3D 视觉的机器人相结合,为学生搭建一个实践平台。
126 64
|
19天前
|
人工智能 弹性计算 Serverless
触手可及,函数计算玩转 AI 大模型 | 简单几步,轻松实现AI绘图
本文介绍了零售业中“人—货—场”三要素的变化,指出传统营销方式已难以吸引消费者。现代消费者更注重个性化体验,因此需要提供超出预期的内容。文章还介绍了阿里云基于函数计算的AI大模型,特别是Stable Diffusion WebUI,帮助非专业人士轻松制作高质量的促销海报。通过详细的部署步骤和实践经验,展示了该方案在实际生产环境中的应用价值。
54 6
触手可及,函数计算玩转 AI 大模型 | 简单几步,轻松实现AI绘图
|
5天前
|
人工智能 弹性计算 网络安全
一键玩转CoAI:AI工程变现新模式
CoAI是一款强大的AI管理软件,支持多种大模型如OpenAI、通义千问等,具备丰富的UI设计、多模型管理、弹性计费等功能,既适合个人使用也支持企业级部署,帮助用户轻松管理和商业化AI能力。
|
16天前
|
人工智能 新制造 芯片
2024年中国AI大模型产业发展报告解读
2024年,中国AI大模型产业迎来蓬勃发展,成为科技和经济增长的新引擎。本文解读《2024年中国AI大模型产业发展报告》,探讨产业发展背景、现状、挑战与未来趋势。技术进步显著,应用广泛,但算力瓶颈、资源消耗和训练数据不足仍是主要挑战。未来,云侧与端侧模型分化、通用与专用模型并存、大模型开源和芯片技术升级将是主要发展方向。
|
22天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
【10月更文挑战第31天】2024年,AI大模型在软件开发领域的应用取得了显著进展,从自动化代码生成、智能代码审查到智能化测试,极大地提升了开发效率和代码质量。然而,技术挑战、伦理与安全问题以及模型可解释性仍是亟待解决的关键问题。开发者需不断学习和适应,以充分利用AI的优势。
|
24天前
|
人工智能 JSON 自然语言处理
基于文档智能&RAG搭建更懂业务的AI大模型
本文介绍了一种结合文档智能和检索增强生成(RAG)技术,构建强大LLM知识库的方法。通过清洗文档内容、向量化处理和特定Prompt,提供足够的上下文信息,实现对企业级文档的智能问答。文档智能(Document Mind)能够高效解析多种文档格式,确保语义的连贯性和准确性。整个部署过程简单快捷,适合处理复杂的企业文档,提升信息提取和利用效率。
|
20天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
74 4
|
11天前
|
人工智能 弹性计算 数据可视化
解决方案|触手可及,函数计算玩转 AI 大模型 评测
解决方案|触手可及,函数计算玩转 AI 大模型 评测
23 0