Python 网络请求:深入理解Requests库

简介: Python 网络请求:深入理解Requests库

引言

在Python编程世界中,进行网络数据交互是一项至关重要的技能,而Requests库则是这一领域中最受开发者喜爱的工具之一。Requests库以其简洁易用、功能强大而著称,让HTTP客户端操作变得无比轻松,无论是获取网页内容、发送POST请求还是处理API响应,它都能提供强大的支持。本文将带领您深入了解Python Requests库,探讨其核心功能和应用场景。

一、Requests库简介

Requests库由Kenneth Reitz于2012年创建,旨在简化HTTP客户端的使用。它建立在urllib3之上,但提供了更加人性化的接口和丰富的功能特性。只需一行代码,就能发起HTTP GET、POST等各类请求,并能自动处理各种HTTP认证机制、重定向、cookies以及超时等问题。

二、安装与基本使用

在Python环境中,通过pip命令即可快速安装Requests库:

pip install requests

导入库后,发起一个HTTP GET请求只需要短短几行代码:

import requests
 
response = requests.get('https://www.example.com')
print(response.status_code)
print(response.text)

上述代码首先导入requests模块,然后使用get方法向指定URL发送GET请求,并将服务器返回的响应存储在response对象中。response对象包含了诸如状态码、响应体文本、headers等多种信息。

三、requests库的特性与优势

  1. 简洁易用:requests库的API设计非常简洁,易于上手。开发者只需关注业务逻辑,无需处理底层的HTTP细节。
  2. 功能强大:requests库支持多种HTTP方法、自动处理URL编码、会话、cookies等复杂操作,能够满足各种HTTP请求的需求。
  3. 高度可定制:requests库提供了丰富的参数和选项,允许开发者根据实际需求定制请求和响应的处理方式。
  4. 社区支持:requests库拥有庞大的用户群体和活跃的社区,遇到问题时可以轻松找到解决方案和支持。

四、requests库在实际应用中的案例

  1. 网页爬虫:使用requests库发送GET请求,抓取网页内容,并结合BeautifulSoup等库解析HTML,提取所需信息。
  1. API交互:与第三方API进行交互,发送POST、PUT等请求,获取或修改数据。
  2. 数据上报:将本地数据通过requests库发送到远程服务器进行存储或分析。

案例代码:

1.get请求

import requests
response = requests.get('https://www.example.com')
print(response.text)​​​​​​​
 
print(response.status_code)  # 输出状态码  
print(response.headers)  # 输出响应头  
print(response.text)  # 输出响应内容(文本格式)  
print(response.json())  # 输出响应内容(JSON格式,如果响应内容是JSON的话)

2.post请求

import requests
import json
data = {'key': 'value'}
json_data = json.dumps(data)
response = requests.post('https://www.example.com', json=json_data)
print(response.text)

3.超时重试

response = requests.get('https://api.example.com/data', timeout=5)
 
try:
    response = requests.get('https://api.example.com/data', timeout=5)
except requests.exceptions.Timeout:
    print('Timeout! Let\'s try it again...')
    response = requests.get('https://api.example.com/data', timeout=5)

4.headers设置

import requests
headers = {'User-Agent': 'Mozilla/5.0'}
response = requests.get('https://www.example.com', headers=headers)
print(response.text)

5.session会话

import requests
session = requests.Session()
# 第一个请求
response1 = session.get('https://www.example.com/login')
print(response1.text)
# 第二个请求,会话保持
response2 = session.get('https://www.example.com/dashboard')
print(response2.text)

6.携带cookie

import requests
cookies = {'key': 'value'}
response = requests.get('https://www.example.com', cookies=cookies)
print(response.text)

7.携带代理

import requests
proxies = {
  'http': 'http://10.10.1.10:3128', 
  'https': 'http://10.10.1.10:1080'
  }
response = requests.get('https://www.example.com', proxies=proxies)
print(response.text)

8.携带身份认证

import requests
from requests.auth import HTTPBasicAuth
response = requests.get('https://www.example.com', auth=HTTPBasicAuth('username', 'password'))
print(response.text)

9.文件上传

import requests
files = {'file': open('example.txt', 'rb')}
response = requests.post('https://www.example.com/upload', files=files)
print(response.text)

10.文件下载

import requests
url = 'https://www.example.com/file.jpg'
response = requests.get(url)
with open('file.jpg', 'wb') as f:
    f.write(response.content)

11.解决重定向

import requests
response = requests.get('https://www.example.com', allow_redirects=False)
if response.status_code == 302:
    redirect_url = response.headers['Location']
    print(f'Redirected to: {redirect_url}')

12.证书验证

import requests
response = requests.get('https://www.example.com', verify=False)
print(response.text)

总结

requests库作为Python中处理HTTP请求的神器,以其简洁易用、功能强大、高度可定制和社区支持等特性,在实际应用中发挥着重要作用。无论是网页爬虫、API交互还是数据上报等场景,requests库都能帮助开发者更加高效地处理HTTP请求,提升开发效率。

目录
相关文章
|
7天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
23 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
29天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
257 55
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
176 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
14天前
|
算法 网络协议 Python
探秘Win11共享文件夹之Python网络通信算法实现
本文探讨了Win11共享文件夹背后的网络通信算法,重点介绍基于TCP的文件传输机制,并提供Python代码示例。Win11共享文件夹利用SMB协议实现局域网内的文件共享,通过TCP协议确保文件传输的完整性和可靠性。服务器端监听客户端连接请求,接收文件请求并分块发送文件内容;客户端则连接服务器、接收数据并保存为本地文件。文中通过Python代码详细展示了这一过程,帮助读者理解并优化文件共享系统。
|
27天前
|
JSON 数据可视化 测试技术
python+requests接口自动化框架的实现
通过以上步骤,我们构建了一个基本的Python+Requests接口自动化测试框架。这个框架具有良好的扩展性,可以根据实际需求进行功能扩展和优化。它不仅能提高测试效率,还能保证接口的稳定性和可靠性,为软件质量提供有力保障。
57 7
|
1月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
84 3
|
2月前
|
网络安全 Python
Python网络编程小示例:生成CIDR表示的IP地址范围
本文介绍了如何使用Python生成CIDR表示的IP地址范围,通过解析CIDR字符串,将其转换为二进制形式,应用子网掩码,最终生成该CIDR块内所有可用的IP地址列表。示例代码利用了Python的`ipaddress`模块,展示了从指定CIDR表达式中提取所有IP地址的过程。
62 6
|
2月前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
85 8
|
2月前
|
数据采集 XML 存储
构建高效的Python网络爬虫:从入门到实践
本文旨在通过深入浅出的方式,引导读者从零开始构建一个高效的Python网络爬虫。我们将探索爬虫的基本原理、核心组件以及如何利用Python的强大库进行数据抓取和处理。文章不仅提供理论指导,还结合实战案例,让读者能够快速掌握爬虫技术,并应用于实际项目中。无论你是编程新手还是有一定基础的开发者,都能在这篇文章中找到有价值的内容。
|
1月前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!