r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现-3

简介: r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现

r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现-2

https://developer.aliyun.com/article/1489395


系数上下限

假设我们要拟合我们的模型,但将系数限制为大于-0.7且小于0.5。这可以通过upper.limitslower.limits 参数实现 :

image.png

通常,我们希望系数为正,因此我们只能lower.limit 将其设置 为0。

惩罚因素

此参数允许用户将单独的惩罚因子应用于每个系数。每个参数的默认值为1,但可以指定其他值。特别是,任何penalty.factor 等于零的变量 都不会受到惩罚

image.png

在许多情况下,某些变量可能是重要,我们希望一直保留它们,这可以通过将相应的惩罚因子设置为0来实现:

image.png

我们从标签中看到惩罚因子为0的三个变量始终保留在模型中,而其他变量遵循典型的正则化路径并最终缩小为0。

自定义图

有时,尤其是在变量数量很少的情况下,我们想在图上添加变量标签。

我们首先生成带有10个变量的一些数据,然后,我们拟合glmnet模型,并绘制标准图。

image.png

我们希望用变量名标记曲线。在路径的末尾放置系数的位置。

image.png

多元正态

使用family = "mgaussian" option 获得多元正态分布glmnet

显然,顾名思义,y不是向量,而是矩阵。结果,每个λ值的系数也是一个矩阵。

在这里,我们解决以下问题:

image.png

这里,βj是p×K系数矩阵β的第j行,对于单个预测变量xj,我们用每个系数K向量βj的组套索罚分代替每个单一系数的绝对罚分。

我们使用预先生成的一组数据进行说明。

我们拟合数据,并返回对象“ mfit”。

mfit = glmnet(x, y, family = "mgaussian")

如果为 standardize.response = TRUE,则将因变量标准化。

为了可视化系数,我们使用 plot 函数。

image.png

注意我们设置了 type.coef = "2norm"。在此设置下,每个变量绘制一条曲线,其值等于ℓ2范数。默认设置为 type.coef = "coef",其中为每个因变量创建一个系数图。

通过使用该函数coef ,我们可以提取要求的λ值的系数, 并通过进行预测 。

## , , 1
## 
##           y1      y2      y3    y4
## \[1,\] -4.7106 -1.1635  0.6028 3.741
## \[2,\]  4.1302 -3.0508 -1.2123 4.970
## \[3,\]  3.1595 -0.5760  0.2608 2.054
## \[4,\]  0.6459  2.1206 -0.2252 3.146
## \[5,\] -1.1792  0.1056 -7.3353 3.248
## 
## , , 2
## 
##           y1      y2      y3    y4
## \[1,\] -4.6415 -1.2290  0.6118 3.780
## \[2,\]  4.4713 -3.2530 -1.2573 5.266
## \[3,\]  3.4735 -0.6929  0.4684 2.056
## \[4,\]  0.7353  2.2965 -0.2190 2.989
## \[5,\] -1.2760  0.2893 -7.8259 3.205

预测结果保存在三维数组中,其中前两个维是每个因变量的预测矩阵,第三个维表示因变量。

我们还可以进行k折交叉验证。

我们绘制结果 cv.glmnet 对象“ cvmfit”。

image.png

显示选定的λ最佳值

cvmfit$lambda.min
## \[1\] 0.04732
cvmfit$lambda.1se
## \[1\] 0.1317

逻辑回归

当因变量是分类的时,逻辑回归是另一个广泛使用的模型。如果有两个可能的结果,则使用二项式分布,否则使用多项式。

二项式模型

对于二项式模型,假设因变量的取值为G = {1,2} 。表示yi = I(gi = 1)。我们建模

image.png

可以用以下形式写

image.png

惩罚逻辑回归的目标函数使用负二项式对数似然

image.png

我们的算法使用对数似然的二次逼近,然后对所得的惩罚加权最小二乘问题进行下降。这些构成了内部和外部循环。

出于说明目的,我们 从数据文件加载预生成的输入矩阵 x 和因变量 y

对于二项式逻辑回归,因变量y可以是两个级别的因子,也可以是计数或比例的两列矩阵。

glmnet 二项式回归的其他可选参数与正态分布的参数 几乎相同。不要忘记将family 选项设置 为“ binomial”。

fit = glmnet(x, y, family = "binomial")

像以前一样,我们可以输出和绘制拟合的对象,提取特定λ处的系数,并进行预测。

image.png

逻辑回归略有不同,主要体现在选择上 type。“链接”和“因变量”不等价,“类”仅可用于逻辑回归。总之,*“链接”给出了线性预测变量

  • “因变量”给出合适的概率
  • “类别”产生对应于最大概率的类别标签。
  • “系数”计算值为的系数 s

在下面的示例中,我们在λ=0.05,0.01的情况下对类别标签进行了预测。

##      1   2  
## \[1,\] "0" "0"
## \[2,\] "1" "1"
## \[3,\] "1" "1"
## \[4,\] "0" "0"
## \[5,\] "1" "1"

对于逻辑回归,type.measure

  • “偏差”使用实际偏差。
  • “ mae”使用平均绝对误差。
  • “class”给出错误分类错误。
  • “ auc”(仅适用于两类逻辑回归)给出了ROC曲线下的面积。

例如,

它使用分类误差作为10倍交叉验证的标准。

我们绘制对象并显示λ的最佳值。

image.png

cvfit$lambda.min
## \[1\] 0.01476
cvfit$lambda.1se
## \[1\] 0.02579

coef 并且 predict 类似于正态分布案例,因此我们省略了细节。我们通过一些例子进行回顾。

## 31 x 1 sparse Matrix of class "dgCMatrix"
##                    1
## (Intercept)  0.24371
## V1           0.06897
## V2           0.66252
## V3          -0.54275
## V4          -1.13693
## V5          -0.19143
## V6          -0.95852
## V7           .      
## V8          -0.56529
## V9           0.77454
## V10         -1.45079
## V11         -0.04363
## V12         -0.06894
## V13          .      
## V14          .      
## V15          .      
## V16          0.36685
## V17          .      
## V18         -0.04014
## V19          .      
## V20          .      
## V21          .      
## V22          0.20882
## V23          0.34014
## V24          .      
## V25          0.66310
## V26         -0.33696
## V27         -0.10570
## V28          0.24318
## V29         -0.22445
## V30          0.11091

如前所述,此处返回的结果仅针对因子因变量的第二类。

##       1  
##  \[1,\] "0"
##  \[2,\] "1"
##  \[3,\] "1"
##  \[4,\] "0"
##  \[5,\] "1"
##  \[6,\] "0"
##  \[7,\] "0"
##  \[8,\] "0"
##  \[9,\] "1"
## \[10,\] "1"


r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现-4

https://developer.aliyun.com/article/1489397

相关文章
|
2月前
|
网络协议 算法 Java
基于Reactor模型的高性能网络库之Tcpserver组件-上层调度器
TcpServer 是一个用于管理 TCP 连接的类,包含成员变量如事件循环(EventLoop)、连接池(ConnectionMap)和回调函数等。其主要功能包括监听新连接、设置线程池、启动服务器及处理连接事件。通过 Acceptor 接收新连接,并使用轮询算法将连接分配给子事件循环(subloop)进行读写操作。调用链从 start() 开始,经由线程池启动和 Acceptor 监听,最终由 TcpConnection 管理具体连接的事件处理。
65 2
|
2月前
基于Reactor模型的高性能网络库之Tcpconnection组件
TcpConnection 由 subLoop 管理 connfd,负责处理具体连接。它封装了连接套接字,通过 Channel 监听可读、可写、关闭、错误等
89 1
|
2月前
|
JSON 监控 网络协议
干货分享“对接的 API 总是不稳定,网络分层模型” 看电商 API 故障的本质
本文从 OSI 七层网络模型出发,深入剖析电商 API 不稳定的根本原因,涵盖物理层到应用层的典型故障与解决方案,结合阿里、京东等大厂架构,详解如何构建高稳定性的电商 API 通信体系。
|
12天前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
|
1月前
|
算法 安全 网络安全
【多智能体系统】遭受DoS攻击的网络物理多智能体系统的弹性模型预测控制MPC研究(Simulink仿真实现)
【多智能体系统】遭受DoS攻击的网络物理多智能体系统的弹性模型预测控制MPC研究(Simulink仿真实现)
|
9月前
|
监控 前端开发 API
一款基于 .NET MVC 框架开发、功能全面的MES系统
一款基于 .NET MVC 框架开发、功能全面的MES系统
232 5
|
开发框架 前端开发 .NET
ASP.NET CORE 3.1 MVC“指定的网络名不再可用\企图在不存在的网络连接上进行操作”的问题解决过程
ASP.NET CORE 3.1 MVC“指定的网络名不再可用\企图在不存在的网络连接上进行操作”的问题解决过程
380 0
|
开发框架 前端开发 JavaScript
ASP.NET MVC 教程
ASP.NET 是一个使用 HTML、CSS、JavaScript 和服务器脚本创建网页和网站的开发框架。
199 7
|
存储 开发框架 前端开发
ASP.NET MVC 迅速集成 SignalR
ASP.NET MVC 迅速集成 SignalR
217 0
|
开发框架 前端开发 .NET
ASP.NET MVC WebApi 接口返回 JOSN 日期格式化 date format
ASP.NET MVC WebApi 接口返回 JOSN 日期格式化 date format
164 0