R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据-3

简介: R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据

R语言风险价值:ARIMA,GARCH,Delta-normal法滚动估计VaR(Value at Risk)和回测分析股票数据-2

https://developer.aliyun.com/article/1489390


VaR预测

ugarchroll 方法允许执行的模型/数据集组合的滚动估计和预测。它返回计算预测密度的任何所需度量所需的分布预测参数。我们将最后 500 个观测值设置为测试集,并对条件标准偏差进行滚动移动 1 步预测, image.png . 我们每 50 次观察重新估计 GARCH 参数。

roll = garhrol(spec = model.spec )
 
#测试集 500 个观察
mean(ret) + rolldesiy\[,'Siga'\]*qdist(dis='std',

回测

image.png 是 T 期间股票收益率低于 VaR 估计值的天数,其中如果 image.png  It 为 1,  和 如果 image.png , It 为 0 . 因此,N 是样本中观察到的异常数。正如 Kupiec (1995) 所论证的那样,失败数遵循二项式分布 B(T, p)。

for(i in 1:50 p\[i\]= (pbinom(q = (i-1 ) - pbinom(q ))
qplot(y = p )

image.png

上图表示由二项式分布给出的异常概率分布。预期数量为 25 (=500obs. x 5%)。两条红线表示 95% 的置信水平,较低的是 16  ,较高的是 35。因此,当我们检查测试集上的异常时,我们期望 16 到 35 之间的数字表明 GARCH 模型预测成功。

plot(VaR95, geom = 'line') +
    geom_point

image.png

黑线代表 GARCH 模型给出的每日预测 VaR,红点代表低于 VaR 的收益率。最后一步是计算异常的数量,并将其与使用 delta-normal 方法生成的异常进行比较。

cat('delta-normal 方法的异常数:', (sum(rets\[759:1258\] < (mean(r\]

image.png

正如我们之前所说,我们预计 delta-normal 方法会高估风险。回测时,只有 14 倍的收益率低于 VaR 低于 95% 显着性水平 (<16)。另一方面,在这种特殊情况下,GARCH 方法(23 个例外)似乎是一种有效的预测工具。

参考

Angelidis T., Benos A. and Degiannakis S. (December 2003). The Use of GARCH Models in VaR Estimation.


image.png

相关文章
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
|
8月前
|
数据可视化
【R语言实战】——金融时序ARIMA建模
【R语言实战】——金融时序ARIMA建模
|
8月前
|
机器学习/深度学习 算法
R语言分类回归分析考研热现象分析与考研意愿价值变现
R语言分类回归分析考研热现象分析与考研意愿价值变现
|
8月前
|
机器学习/深度学习 数据可视化 数据挖掘
R语言逻辑回归logistic对ST股票风险建模分类分析混淆矩阵、ROC曲线可视化
R语言逻辑回归logistic对ST股票风险建模分类分析混淆矩阵、ROC曲线可视化
|
8月前
|
数据可视化
R语言汇率、股价指数与GARCH模型分析:格兰杰因果检验、脉冲响应与预测可视化
R语言汇率、股价指数与GARCH模型分析:格兰杰因果检验、脉冲响应与预测可视化
|
8月前
|
存储 数据可视化
R语言软件套保期限GARCH、VAR、OLS回归模型对沪深300金融数据可视化分析
R语言软件套保期限GARCH、VAR、OLS回归模型对沪深300金融数据可视化分析
|
8月前
|
数据库
R语言分析ROE与股票收益的关系
R语言分析ROE与股票收益的关系
|
8月前
|
机器学习/深度学习 算法 Serverless
数据分享|R语言武汉流动人口趋势预测:灰色模型GM(1,1)、ARIMA时间序列、logistic逻辑回归模型
数据分享|R语言武汉流动人口趋势预测:灰色模型GM(1,1)、ARIMA时间序列、logistic逻辑回归模型
|
8月前
|
机器学习/深度学习 数据可视化 算法
数据分享|R语言交互可视化分析Zillow房屋市场:arima、VAR时间序列、XGBoost、主成分分析、LASSO报告
数据分享|R语言交互可视化分析Zillow房屋市场:arima、VAR时间序列、XGBoost、主成分分析、LASSO报告