【视频】Boosting集成学习原理与R语言提升回归树BRT预测短鳍鳗分布生态学实例-3

简介: 【视频】Boosting集成学习原理与R语言提升回归树BRT预测短鳍鳗分布生态学实例

【视频】Boosting集成学习原理与R语言提升回归树BRT预测短鳍鳗分布生态学实例-2

https://developer.aliyun.com/article/1489362



step(  x= pred.list\[\[1\]\], )

image.png

image.png

现在这已经形成了一个新的模型,但是考虑到我们并不特别想要一个更简单的模型(因为在这种规模的数据集中,包含的变量贡献很小是可以接受的),我们不会继续使用它。

绘制模型的函数和拟合值

由我们的函数创建的BRT模型的拟合函数可以用plot来绘制。

>  plot( lr005 )

image.png

这个函数的附加参数允许对图进行平滑表示。根据环境空间内观测值的分布,拟合函数可以给出与每个预测因子有关的拟合值分布。

fits( lr005)

image.png

每张图上方的数值表示与每个非因素预测因子有关的拟合值的加权平均值。

绘制交互作用

该代码评估数据中成对的交互作用的程度。

inter( lr005)

返回一个列表。前两个部分是对结果的总结,首先是5个最重要的交互作用的排名列表,其次是所有交互作用的表格。

f$intera

image.png

你可以像这样绘制交互作用。

persp( lr005,  z.range=c(0,0.6)

image.png

对新数据进行预测

如果您想对一组地点进行预测(而不是对整个地图进行预测),一般的程序是建立一个数据框架,行代表地点,列代表您模型中的变量。我们用于预测站点的数据集在一个名为test的文件中。"列需要转换为一个因子变量,其水平与建模数据中的水平一致。使用predict对BRT模型中的站点进行预测,预测结果在一个名为preds的向量中。

preds <- predict(lr005,test,
deviance(obs=test, pred=preds)

image.png

> d <- cbind(obs, preds)
> e <- evaluate(p=pres, a=abs)

image.png

gbm中预测的一个有用的特点是可以预测不同数量的树。

tree<- seq(100, 5000, by=100)
predict( n.trees=tree, "response")

image.png

上面的代码会形成一个矩阵,每一列都是模型对tree.list中该元素所指定的树数量的预测,例如,第5列的预测是针对tree.list[5]=500棵树。现在来计算所有这些结果的偏差,然后绘制。

> for (i in 1:50) {
 calc.devi(obs,
+ pred\[,i\])
+ }
> plot(tree.list,deviance

image.png

空间预测

这里我们展示了如何对整张地图进行预测。

> plot(grids)

image.png

我们用一个常量值("因子 "类)创建一个data.frame,并将其传递给预测函数。

> p <- predict(grids, lr005,
> plot(p)

image.png

相关文章
|
1月前
|
测试技术
软件质量保护与测试(第2版)学习总结第十三章 集成测试
本文是《软件质量保护与测试》(第2版)第十三章的学习总结,介绍了集成测试的概念、主要任务、测试层次与原则,以及集成测试的不同策略,包括非渐增式集成和渐增式集成(自顶向下和自底向上),并通过图示详细解释了集成测试的过程。
59 1
软件质量保护与测试(第2版)学习总结第十三章 集成测试
|
1月前
|
前端开发 Java 程序员
springboot 学习十五:Spring Boot 优雅的集成Swagger2、Knife4j
这篇文章是关于如何在Spring Boot项目中集成Swagger2和Knife4j来生成和美化API接口文档的详细教程。
84 1
|
1月前
|
Java Spring
springboot 学习十一:Spring Boot 优雅的集成 Lombok
这篇文章是关于如何在Spring Boot项目中集成Lombok,以简化JavaBean的编写,避免冗余代码,并提供了相关的配置步骤和常用注解的介绍。
90 0
|
1月前
|
机器学习/深度学习 算法 前端开发
集成学习任务七和八、投票法与bagging学习
集成学习任务七和八、投票法与bagging学习
15 0
|
1月前
|
机器学习/深度学习 算法
【机器学习】迅速了解什么是集成学习
【机器学习】迅速了解什么是集成学习
|
3月前
|
机器学习/深度学习 运维 算法
【阿里天池-医学影像报告异常检测】3 机器学习模型训练及集成学习Baseline开源
本文介绍了一个基于XGBoost、LightGBM和逻辑回归的集成学习模型,用于医学影像报告异常检测任务,并公开了达到0.83+准确率的基线代码。
65 9
|
3月前
|
人工智能
LLama+Mistral+…+Yi=? 免训练异构大模型集成学习框架DeePEn来了
【8月更文挑战第6天】DeePEn是一种免训练异构大模型集成学习框架,旨在通过融合多个不同架构和参数的大模型输出概率分布,提升整体性能。它首先将各模型输出映射至统一概率空间,然后进行聚合,并最终反转回单一模型空间以生成输出。实验证明,在知识问答和推理任务上,DeePEn相比单一大模型如LLaMA和Mistral有显著提升,但其效果受模型质量和数量影响,并且计算成本较高。[论文: https://arxiv.org/abs/2404.12715]
44 1
|
3月前
|
机器学习/深度学习
【机器学习】模型融合Ensemble和集成学习Stacking的实现
文章介绍了使用mlxtend和lightgbm库中的分类器,如EnsembleVoteClassifier和StackingClassifier,以及sklearn库中的SVC、KNeighborsClassifier等进行模型集成的方法。
54 1
|
4月前
|
机器学习/深度学习 算法 前端开发
集成学习的力量:Sklearn中的随机森林与梯度提升详解
【7月更文第23天】集成学习,作为机器学习中一种强大而灵活的技术,通过结合多个基础模型的预测来提高整体预测性能。在`scikit-learn`(简称sklearn)这一Python机器学习库中,随机森林(Random Forest)和梯度提升(Gradient Boosting)是两种非常流行的集成学习方法。本文将深入解析这两种方法的工作原理,并通过代码示例展示它们在sklearn中的应用。
183 10
|
4月前
|
机器学习/深度学习 算法 前端开发
集成学习(Ensemble Learning)是一种机器学习技术,它通过将多个学习器(或称为“基学习器”、“弱学习器”)的预测结果结合起来,以提高整体预测性能。
集成学习(Ensemble Learning)是一种机器学习技术,它通过将多个学习器(或称为“基学习器”、“弱学习器”)的预测结果结合起来,以提高整体预测性能。