原文链接:http://tecdat.cn/?p=23061
数据集信息:
这个数据集可以追溯到1988年,由四个数据库组成。克利夫兰、匈牙利、瑞士和长滩。"目标 "字段是指病人是否有心脏病。它的数值为整数,0=无病,1=有病。
目标:
主要目的是预测给定的人是否有心脏病,借助于几个因素,如年龄、胆固醇水平、胸痛类型等。
我们在这个问题上使用的算法是:
- 二元逻辑回归
- Naive Bayes算法
- 决策树
- 随机森林
数据集的描述:
该数据有303个观察值和14个变量。每个观察值都包含关于个人的以下信息。
- 年龄:- 个人的年龄,以年为单位
- sex:- 性别(1=男性;0=女性)
- cp - 胸痛类型(1=典型心绞痛;2=非典型心绞痛;3=非心绞痛;4=无症状)。
- trestbps--静息血压
- chol - 血清胆固醇,单位:mg/dl
- fbs - 空腹血糖水平>120 mg/dl(1=真;0=假)
- restecg - 静息心电图结果(0=正常;1=有ST-T;2=肥大)
- thalach - 达到的最大心率
- exang - 运动诱发的心绞痛(1=是;0=否)
- oldpeak - 相对于静止状态,运动诱发的ST压低
- slope - 运动时ST段峰值的斜率(1=上斜;2=平坦;3=下斜)
- ca - 主要血管的数量(0-4),由Flourosopy着色
- 地中海贫血症--地中海贫血症是一种遗传性血液疾病,会影响身体产生血红蛋白和红细胞的能力。1=正常;2=固定缺陷;3=可逆转缺陷
- 目标--预测属性--心脏疾病的诊断(血管造影疾病状态)(值0=<50%直径狭窄;值1=>50%直径狭窄)
在Rstudio中加载数据
heart<-read.csv("heart.csv",header = T)
header = T意味着给定的数据有自己的标题,或者换句话说,第一个观测值也被考虑用于预测。
head(heart)
当我们想查看和检查数据的前六个观察点时,我们使用head函数。
tail(heart)
显示的是我们数据中最后面的六个观察点
colSums(is.na(heart))
这个函数是用来检查我们的数据是否包含任何NA值。
如果没有发现NA,我们就可以继续前进,否则我们就必须在之前删除NA。
检查我们的数据结构
str(heart)
查看我们的数据摘要
summary(heart)
通过观察以上的总结,我们可以说以下几点
- 性别不是连续变量,因为根据我们的描述,它可以是男性或女性。因此,我们必须将性别这个变量名称从整数转换为因子。
- cp不能成为连续变量,因为它是胸痛的类型。由于它是胸痛的类型,我们必须将变量cp转换为因子。
- fbs不能是连续变量或整数,因为它显示血糖水平是否低于120mg/dl。
- restecg是因子,因为它是心电图结果的类型。它不能是整数。所以,我们要把它转换为因子和标签。
- 根据数据集的描述,exang应该是因子。心绞痛发生或不发生。因此,将该变量转换为因子。
- 斜率不能是整数,因为它是在心电图中观察到的斜率类型。因此,我们将变量转换为因子。
- 根据数据集的描述,ca不是整数。因此,我们要将该变量转换为因子。
- thal不是整数,因为它是地中海贫血的类型。因此,我们将变量转换为因子。
- 目标是预测变量,告诉我们这个人是否有心脏病。因此,我们将该变量转换为因子,并为其贴上标签。
根据上述考虑,我们对变量做了一些变化
#例如 sex<-as.factor(sex) levels(sex)<-c("Female","Male")
检查上述变化是否执行成功
str(heart)
summary(heart)
EDA
EDA是探索性数据分析(Exploratory Data Analysis)的缩写,它是一种数据分析的方法/哲学,采用各种技术(主要是图形技术)来深入了解数据集。
对于图形表示,我们需要库 "ggplot2"
library(ggplot2) ggplot(heart,aes(x=age,fill=target,color=target)) + geom_histogram(binwidth = 1,color="black") + labs(x = "Age",y = "Frequency", title = "Heart Disease w.r.t. Age")
我们可以得出结论,与60岁以上的人相比,40至60岁的人患心脏病的概率最高。
table <- table(cp) pie(table)
我们可以得出结论,在所有类型的胸痛中,在个人身上观察到的大多数是典型的胸痛类型,然后是非心绞痛。
R语言逻辑回归、Naive Bayes贝叶斯、决策树、随机森林算法预测心脏病-2