并发编程之变量的线程安全分析的详细解析

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: 并发编程之变量的线程安全分析的详细解析

4.4 变量的线程安全分析

成员变量和静态变量是否线程安全?
  • 如果它们没有共享,则线程安全
  • 如果它们被共享了,根据它们的状态是否能够改变,又分两种情况
  • 如果只有读操作,则线程安全
  • 如果有读写操作,则这段代码是临界区,需要考虑线程安全
局部变量是否线程安全?
  • 局部变量是线程安全的
  • 但局部变量引用的对象则未必
  • 如果该对象没有逃离方法的作用访问,它是线程安全的
  • 如果该对象逃离方法的作用范围,需要考虑线程安全
局部变量线程安全分析
public static void test1() {
    int i = 10;
    i++;
}

每个线程调用 test1() 方法时局部变量 i,会在每个线程的栈帧内存中被创建多份,因此不存在共享

public static void test1();
 descriptor: ()V 
 flags: ACC_PUBLIC, ACC_STATIC
 Code:
 stack=1, locals=1, args_size=0
 0: bipush 10
 2: istore_0
 3: iinc 0, 1
 6: return
 LineNumberTable:
 line 10: 0
 line 11: 3
 line 12: 6
 LocalVariableTable:
 Start Length Slot Name Signature
 3        4     0   i      I

如图

局部变量的引用稍有不同

先看一个成员变量的例子

class ThreadUnsafe {
    ArrayList<String> list = new ArrayList<>();
    public void method1(int loopNumber) {
        for (int i = 0; i < loopNumber; i++) {
            // { 临界区, 会产生竞态条件
            method2();
            method3();
            // } 临界区
        }
    }
    private void method2() {
        list.add("1");
    }
    private void method3() {
        list.remove(0);
    }
}

执行

static final int THREAD_NUMBER = 2;
static final int LOOP_NUMBER = 200;
public static void main(String[] args) {
    ThreadUnsafe test = new ThreadUnsafe();
    for (int i = 0; i < THREAD_NUMBER; i++) {
        new Thread(() -> {
            test.method1(LOOP_NUMBER);
        }, "Thread" + i).start();
    }
}

其中一种情况是,如果线程2 还未 add,线程1 remove 就会报错:

Exception in thread "Thread1" java.lang.IndexOutOfBoundsException: Index: 0, Size: 0 
 at java.util.ArrayList.rangeCheck(ArrayList.java:657) 
 at java.util.ArrayList.remove(ArrayList.java:496) 
 at cn.itcast.n6.ThreadUnsafe.method3(TestThreadSafe.java:35) 
 at cn.itcast.n6.ThreadUnsafe.method1(TestThreadSafe.java:26) 
 at cn.itcast.n6.TestThreadSafe.lambda$main$0(TestThreadSafe.java:14) 
 at java.lang.Thread.run(Thread.java:748) 

分析:

  • 无论哪个线程中的 method2 引用的都是同一个对象中的 list 成员变量
  • method3 与 method2 分析相同

将 list 修改为局部变量

class ThreadSafe {
    public final void method1(int loopNumber) {
        ArrayList<String> list = new ArrayList<>();
        for (int i = 0; i < loopNumber; i++) {
            method2(list);
            method3(list);
        }
    }
    private void method2(ArrayList<String> list) {
        list.add("1");
    }
    private void method3(ArrayList<String> list) {
        list.remove(0);
    }
}

那么就不会有上述问题了

分析:

  • list 是局部变量,每个线程调用时会创建其不同实例,没有共享
  • 而 method2 的参数是从 method1 中传递过来的,与 method1 中引用同一个对象
  • method3 的参数分析与 method2 相同

方法访问修饰符带来的思考,如果把 method2 和 method3 的方法修改为 public 会不会代理线程安全问题

  • 情况1:有其它线程调用 method2 和 method3
  • 情况2:在 情况1 的基础上,为 ThreadSafe 类添加子类,子类覆盖 method2 或 method3 方法,
class ThreadSafe {
    public final void method1(int loopNumber) {
        ArrayList<String> list = new ArrayList<>();
        for (int i = 0; i < loopNumber; i++) {
            method2(list);
            method3(list);
        }
    }
    private void method2(ArrayList<String> list) {
        list.add("1");
    }
    private void method3(ArrayList<String> list) {
        list.remove(0);
    }
}
class ThreadSafeSubClass extends ThreadSafe{
    @Override
    public void method3(ArrayList<String> list) {
        new Thread(() -> {
            list.remove(0);
        }).start();
    }
}

从这个例子可以看出 private 或 final 提供【安全】的意义所在,请体会开闭原则中的【闭】


相关文章
|
24天前
|
存储 缓存 Java
什么是线程池?从底层源码入手,深度解析线程池的工作原理
本文从底层源码入手,深度解析ThreadPoolExecutor底层源码,包括其核心字段、内部类和重要方法,另外对Executors工具类下的四种自带线程池源码进行解释。 阅读本文后,可以对线程池的工作原理、七大参数、生命周期、拒绝策略等内容拥有更深入的认识。
什么是线程池?从底层源码入手,深度解析线程池的工作原理
|
19天前
|
缓存 Java 应用服务中间件
Java虚拟线程探究与性能解析
本文主要介绍了阿里云在Java-虚拟-线程任务中的新进展和技术细节。
|
14天前
|
负载均衡 Java 调度
探索Python的并发编程:线程与进程的比较与应用
本文旨在深入探讨Python中的并发编程,重点比较线程与进程的异同、适用场景及实现方法。通过分析GIL对线程并发的影响,以及进程间通信的成本,我们将揭示何时选择线程或进程更为合理。同时,文章将提供实用的代码示例,帮助读者更好地理解并运用这些概念,以提升多任务处理的效率和性能。
|
20天前
|
存储 缓存 自然语言处理
深度解析ElasticSearch:构建高效搜索与分析的基石
【9月更文挑战第8天】在数据爆炸的时代,如何快速、准确地从海量数据中检索出有价值的信息成为了企业面临的重要挑战。ElasticSearch,作为一款基于Lucene的开源分布式搜索和分析引擎,凭借其强大的实时搜索、分析和扩展能力,成为了众多企业的首选。本文将深入解析ElasticSearch的核心原理、架构设计及优化实践,帮助读者全面理解这一强大的工具。
102 7
|
28天前
|
缓存 监控 Java
Java中的并发编程:理解并应用线程池
在Java的并发编程中,线程池是提高应用程序性能的关键工具。本文将深入探讨如何有效利用线程池来管理资源、提升效率和简化代码结构。我们将从基础概念出发,逐步介绍线程池的配置、使用场景以及最佳实践,帮助开发者更好地掌握并发编程的核心技巧。
|
17天前
|
并行计算 API 调度
探索Python中的并发编程:线程与进程的对比分析
【9月更文挑战第21天】本文深入探讨了Python中并发编程的核心概念,通过直观的代码示例和清晰的逻辑推理,引导读者理解线程与进程在解决并发问题时的不同应用场景。我们将从基础理论出发,逐步过渡到实际案例分析,旨在揭示Python并发模型的内在机制,并比较它们在执行效率、资源占用和适用场景方面的差异。文章不仅适合初学者构建并发编程的基础认识,同时也为有经验的开发者提供深度思考的视角。
|
1月前
|
监控 安全 网络安全
恶意软件分析:解析与实践指南
【8月更文挑战第31天】
71 0
|
2月前
|
Java 数据库连接 微服务
揭秘微服务架构下的数据魔方:Hibernate如何玩转分布式持久化,实现秒级响应的秘密武器?
【8月更文挑战第31天】微服务架构通过将系统拆分成独立服务,提升了可维护性和扩展性,但也带来了数据一致性和事务管理等挑战。Hibernate 作为强大的 ORM 工具,在微服务中发挥关键作用,通过二级缓存和分布式事务支持,简化了对象关系映射,并提供了有效的持久化策略。其二级缓存机制减少数据库访问,提升性能;支持 JTA 保证跨服务事务一致性;乐观锁机制解决并发数据冲突。合理配置 Hibernate 可助力构建高效稳定的分布式系统。
51 0
|
2月前
|
程序员 调度 C++
解锁Ruby并发编程新境界!Fiber与线程:轻量级VS重量级,你选哪一派引领未来?
【8月更文挑战第31天】Ruby提供了多种并发编程方案,其中Fiber与线程是关键机制。Fiber是自1.9版起引入的轻量级并发模型,无需独立堆栈和上下文切换,由程序员控制调度。线程则为操作系统级别,具备独立堆栈和上下文,能利用多核处理器并行执行。通过示例代码展示了Fiber和线程的应用场景,如任务调度和多URL数据下载,帮助开发者根据需求选择合适的并发模型,提升程序性能与响应速度。
31 0
|
2月前
|
监控 网络协议 Java
Tomcat源码解析】整体架构组成及核心组件
Tomcat,原名Catalina,是一款优雅轻盈的Web服务器,自4.x版本起扩展了JSP、EL等功能,超越了单纯的Servlet容器范畴。Servlet是Sun公司为Java编程Web应用制定的规范,Tomcat作为Servlet容器,负责构建Request与Response对象,并执行业务逻辑。
Tomcat源码解析】整体架构组成及核心组件

推荐镜像

更多