【视频】R语言生存分析原理与晚期肺癌患者分析案例|数据分享-2
https://developer.aliyun.com/article/1488339
中位生存率常常被错误估计
总结165例死亡患者的中位生存时间
## median_surv ## 1 226
- 当 忽略被检查患者也有助于随访的事实时, 会得出错误的估计中值生存时间226天。
- 正确的中位生存时间估计是310天。
忽略删失对中位数生存率的影响
- 忽略删失会造成人为降低的生存曲线,因为排除了受删失患者贡献的随访时间(紫色线)
- 数据的真实生存曲线以
lung
蓝色显示,以进行比较
比较各组之间的生存时间
- 我们可以使用对数秩检验进行组间重要性检验
- 对数秩检验在整个随访时间内平均权衡观察结果,是比较组间生存时间的最常用方法
- 根据研究问题,有些版本可能会更重视早期或后期的随访,可能更合适
我们使用 函数获得对数秩p值。例如,我们可以根据lung
数据中的性别测试是否存在生存时间差异
## Call: ## ## N Observed Expected (O-E)^2/E (O-E)^2/V ## sex=1 138 112 91.6 4.55 10.3 ## sex=2 90 53 73.4 5.68 10.3 ## ## Chisq= 10.3 on 1 degrees of freedom, p= 0.001
从survdiff对象中提取信息
从 结果中提取p值
1 - pchisq(sd$chisq, length(sd$n) - 1)
## \[1\] 0.001311165
返回格式化的p值
## \[1\] 0.001
Cox回归模型
我们可能想量化单个变量的效应大小,或者将多个变量包括在回归模型中以说明多个变量的效应。
Cox回归模型是半参数模型,可用于拟合具有生存结果的单变量和多变量回归模型。
h(t)h(t):危险或事件发生的瞬时速率h0(t)h0(t):基本基准危险
该模型的一些关键假设:
- 非信息删失
- 比例危险
_注意_:也可以使用用于生存结果的参数回归模型,但是本培训将不涉及这些模型。
我们可以使用coxph
函数拟合生存数据的回归模型,该函数Surv
在左侧使用一个对象,而在右侧具有用于回归公式的标准语法R
。
## Call: ## ## coef exp(coef) se(coef) z p ## sex -0.5310 0.5880 0.1672 -3.176 0.00149 ## ## Likelihood ratio test=10.63 on 1 df, p=0.001111 ## n= 228, number of events= 165
格式化Cox回归结果
我们可以看到输出的整洁版本broom
:
或使用
危险比
- 来自Cox回归模型的关注数量是危险比(HR)。HR表示在任何特定时间点两组之间的危险比率。
- HR被解释为感兴趣事件中那些仍处于事件风险中的事件的瞬时发生率。
- 如果您有一个回归参数ββ(来自
estimate
我们的列coxph
),则HR = 经验值(β)经验值(β)。 - HR <1表示死亡危险降低,而HR> 1表示死亡危险增加。
- 因此,我们的HR = 0.59意味着在任何给定时间,女性死亡的人数大约是男性的0.6倍。
第2部分:地标分析和时间相关协变量
在第1部分中,我们介绍了使用对数秩检验和Cox回归来检验感兴趣的协变量与生存结果之间的关联。
示例:肿瘤反应
示例:从治疗开始就测量总生存期,关注的是对治疗的完全反应与生存之间的关联。
- Anderson等人(JCO,1983)描述了在这种情况下,为什么传统方法(如对数秩检验或Cox回归)偏向于响应者,并提出了划时代的方法。
- 界标方法中的零假设是,从界标生存的过程不依赖于界标的响应状态。
Anderson, J., Cain, K., & Gelber, R. (1983). Analysis of survival by tumor response. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 1(11), 710-9.
其他例子
癌症研究中可能尚未关注的其他一些可能的协变量包括:
- 移植失败
- 移植物抗宿主病
- 第二次切除
- 辅助治疗
- 合规
- 不良事件
示例数据
137例骨髓移植患者的数据。变量包括:
T1
死亡时间或最后一次随访时间(天)delta1
死亡指标;1死0活TA
急性移植物抗宿主病的时间(以天为单位)deltaA
急性移植物抗宿主病指标;1-发展为急性移植物抗宿主病,0-从未发展为急性移植物抗宿主病
让我们加载数据以供整个示例使用
地标法
- 选择基线之后的固定时间作为界标时间。_注意_:应在检查数据之前根据临床信息进行操作
- 那些人群的子集至少跟踪到里程碑时间。_注意_:请务必在地标时间之前报告由于关注或删失事件而排除的号码。
- 计算具有里程碑意义的时间,并应用传统的对数秩检验或Cox回归
在BMT
数据感兴趣的是急性移植物抗宿主病(aGVHD)和存活之间的关联。但是aGVHD是在移植后进行评估的,这是我们的基线,也就是后续随访的开始时间。
步骤1选择地标时间
通常,aGVHD发生在移植后的前90天内,因此我们使用90天的界标。
人们对急性移植物抗宿主病(aGVHD)与生存之间的关系感兴趣。但是aGVHD是在移植后进行评估的,这是我们的基线,也就是后续随访的开始时间。
第2步:至少跟踪到里程碑时间之前的人群的子集
这将我们的样本量从137减少到122。
- 所有15位被排除的患者均在90天里程碑之前死亡
人们对急性移植物抗宿主病(aGVHD)与生存之间的关系感兴趣。但是aGVHD是在移植后进行评估的,这是我们的基线,也就是后续随访的开始时间。
步骤3根据地标计算随访时间,并应用传统方法。
使用BMT数据的Cox回归界标示例
在Cox回归中, 可以使用中的subset
选项coxph
来排除那些在标志性时间内没有被随访的患者
时间相关协变量
界标分析的替代方法是合并时间相关的协变量。这可能更适合
- 协变量的值随时间变化
- 没有明显的里程碑时间
时间相关协变量数据设置
对时间相关协变量的分析R
需要建立特殊的数据集。
BMT
数据中没有ID变量,这是创建特殊数据集所必需的,因此请创建一个名为的变量my_id
。
将tmerge
函数与event
和函数一起使用tdc
可创建特殊数据集。
tmerge
为每个患者的不同协变量值创建一个具有多个时间间隔的长数据集event
创建新的事件指示器,以与新创建的时间间隔一致tdc
创建与时间相关的协变量指标,以与新创建的时间间隔一致
时间相关协变量-单例患者
要了解其作用,让我们看一下前5名患者的数据。
## my_id T1 delta1 TA deltaA ## 1 1 2081 0 67 1 ## 2 2 1602 0 1602 0 ## 3 3 1496 0 1496 0 ## 4 4 1462 0 70 1 ## 5 5 1433 0 1433 0
这些相同患者的新数据集
## my_id T1 delta1 id tstart tstop death agvhd ## 1 1 2081 0 1 0 67 0 0 ## 2 1 2081 0 1 67 2081 0 1 ## 3 2 1602 0 2 0 1602 0 0 ## 4 3 1496 0 3 0 1496 0 0 ## 5 4 1462 0 4 0 70 0 0 ## 6 4 1462 0 4 70 1462 0 1 ## 7 5 1433 0 5 0 1433 0 0
时间相关协变量-Cox回归
现在,我们可以分析这个时间依赖性协照常使用Cox回归与coxph
摘要
我们发现,使用标志性分析或时间依赖性协变量,急性移植物抗宿主病与死亡无显着相关性。
通常,人们会希望使用地标分析对单个协变量进行可视化, 使用带有时间相关协变量的Cox回归进行单变量和多变量建模。
【视频】R语言生存分析原理与晚期肺癌患者分析案例|数据分享-4