MATLAB随机森林优化贝叶斯预测分析汽车燃油经济性

简介: MATLAB随机森林优化贝叶斯预测分析汽车燃油经济性

原文链接:http://tecdat.cn/?p=23075

这个例子展示了如何用Matlab实现贝叶斯优化,使用分位数误差调整回归树随机森林的超参数。如果你打算使用模型来预测条件量值而不是条件平均值,那么使用分位数误差而不是平均平方误差来调整模型是合适的。

加载和预处理数据

加载数据集。考虑建立一个模型,预测一辆汽车的燃油经济性中位数,给定它的加速度、汽缸数、发动机排量、马力、制造商、型号和重量。考虑将汽缸数、制造商和型号_年份作为分类变量。

Cylinders = categorical(Cylinders);

image.png

指定调整参数

考虑调整:

  • 森林中的树木的复杂性(深度)。深的树倾向于过度拟合,但浅的树倾向于欠拟合。因此,规定每片叶子的最小观测值数量最多为20。
  • 生长树时,在每个节点上要采样的预测器数量。指定从1到所有预测的采样。

实现贝叶斯优化的函数,要求你将这些参数作为优化变量对象传递。

optim('minLS',\[1,maxMinLS\],'Type');

超参数随机森林是一个2乘1的优化变量对象数组

贝叶斯优化倾向于选择包含很多树的随机森林,因为具有更多学习者的合集更准确。如果可用的计算资源是一个考虑因素,并且你倾向于树数较少的合集,那么可以考虑将树的数量与其他参数分开调整,或者对含有许多学习者的模型进行惩罚。

定义目标函数

为贝叶斯优化算法定义一个要优化的目标函数。该函数应:

  • 接受要调整的参数作为输入。
  • 使用TreeBagger训练一个随机森林。在TreeBagger调用中,指定要调整的参数并指定返回袋外指数。
  • 根据中位数估计袋外分位数误差。
  • 返回袋外数据的分位数误差。
function Err = RF(X)
%训练随机森林并估计袋外的分位数误差
% 使用X中的预测数据和params中的参数说明,训练一个由300棵回归树组成的随机森林,然后根据中位数返回袋外误差。X是一个表,params是一个数组,对应于每个节点的最小叶子大小和预测器数量来采样。
randomForest = Tree(300,X);
Error(randomForest);

使用贝叶斯优化实现目标最小化

使用贝叶斯优化法,找到在树的复杂性和每个节点的预测因子数量方面达到最小的、惩罚的、袋外分位数误差的模型。

bayes(@(params)oobErrRF,parameters,...);

image.png

image.png

结果是一个BayesianOptimization对象,其中包括目标函数的最小值和优化的超参数值。

相关文章
|
2月前
|
存储 传感器 分布式计算
针对大尺度L1范数优化问题的MATLAB工具箱推荐与实现
针对大尺度L1范数优化问题的MATLAB工具箱推荐与实现
|
2月前
|
新能源 Java Go
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
107 0
|
2月前
|
编解码 运维 算法
【分布式能源选址与定容】光伏、储能双层优化配置接入配电网研究(Matlab代码实现)
【分布式能源选址与定容】光伏、储能双层优化配置接入配电网研究(Matlab代码实现)
152 12
|
2月前
|
机器学习/深度学习 供应链 算法
【电动车】基于削峰填谷的电动汽车多目标优化调度策略研究(Matlab代码实现)
【电动车】基于削峰填谷的电动汽车多目标优化调度策略研究(Matlab代码实现)
|
2月前
|
机器学习/深度学习 算法 新能源
基于动态非合作博弈的大规模电动汽车实时优化调度电动汽车决策研究(Matlab代码实现)
基于动态非合作博弈的大规模电动汽车实时优化调度电动汽车决策研究(Matlab代码实现)
|
2月前
|
机器学习/深度学习 存储 人工智能
基于双层共识控制的直流微电网优化调度(Matlab代码实现)
基于双层共识控制的直流微电网优化调度(Matlab代码实现)
112 0
|
2月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
120 0
|
2月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
208 0
|
2月前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
111 0
|
2月前
|
算法 机器人 计算机视觉
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)

热门文章

最新文章