MATLAB随机森林优化贝叶斯预测分析汽车燃油经济性

简介: MATLAB随机森林优化贝叶斯预测分析汽车燃油经济性

原文链接:http://tecdat.cn/?p=23075

这个例子展示了如何用Matlab实现贝叶斯优化,使用分位数误差调整回归树随机森林的超参数。如果你打算使用模型来预测条件量值而不是条件平均值,那么使用分位数误差而不是平均平方误差来调整模型是合适的。

加载和预处理数据

加载数据集。考虑建立一个模型,预测一辆汽车的燃油经济性中位数,给定它的加速度、汽缸数、发动机排量、马力、制造商、型号和重量。考虑将汽缸数、制造商和型号_年份作为分类变量。

Cylinders = categorical(Cylinders);

image.png

指定调整参数

考虑调整:

  • 森林中的树木的复杂性(深度)。深的树倾向于过度拟合,但浅的树倾向于欠拟合。因此,规定每片叶子的最小观测值数量最多为20。
  • 生长树时,在每个节点上要采样的预测器数量。指定从1到所有预测的采样。

实现贝叶斯优化的函数,要求你将这些参数作为优化变量对象传递。

optim('minLS',\[1,maxMinLS\],'Type');

超参数随机森林是一个2乘1的优化变量对象数组

贝叶斯优化倾向于选择包含很多树的随机森林,因为具有更多学习者的合集更准确。如果可用的计算资源是一个考虑因素,并且你倾向于树数较少的合集,那么可以考虑将树的数量与其他参数分开调整,或者对含有许多学习者的模型进行惩罚。

定义目标函数

为贝叶斯优化算法定义一个要优化的目标函数。该函数应:

  • 接受要调整的参数作为输入。
  • 使用TreeBagger训练一个随机森林。在TreeBagger调用中,指定要调整的参数并指定返回袋外指数。
  • 根据中位数估计袋外分位数误差。
  • 返回袋外数据的分位数误差。
function Err = RF(X)
%训练随机森林并估计袋外的分位数误差
% 使用X中的预测数据和params中的参数说明,训练一个由300棵回归树组成的随机森林,然后根据中位数返回袋外误差。X是一个表,params是一个数组,对应于每个节点的最小叶子大小和预测器数量来采样。
randomForest = Tree(300,X);
Error(randomForest);

使用贝叶斯优化实现目标最小化

使用贝叶斯优化法,找到在树的复杂性和每个节点的预测因子数量方面达到最小的、惩罚的、袋外分位数误差的模型。

bayes(@(params)oobErrRF,parameters,...);

image.png

image.png

结果是一个BayesianOptimization对象,其中包括目标函数的最小值和优化的超参数值。

相关文章
|
13天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
17天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。
|
24天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
26天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
该程序基于ACO蚁群优化算法解决VRPSD问题,使用MATLAB2022a实现,输出优化收敛曲线及路径规划结果。ACO通过模拟蚂蚁寻找食物的行为,利用信息素和启发式信息指导搜索,有效求解带时间窗约束的车辆路径问题,最小化总行程成本。
|
25天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
29天前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析码长,码率,信道对译码性能的影响,对比卷积码,turbo码以及BCH码
本程序系统基于BP译码的LDPC误码率MATLAB仿真,分析不同码长、码率、信道对译码性能的影响,并与卷积码、Turbo码及BCH编译码进行对比。升级版增加了更多码长、码率和信道的测试,展示了LDPC码的优越性能。LDPC码由Gallager在1963年提出,具有低复杂度、可并行译码等优点,近年来成为信道编码研究的热点。程序在MATLAB 2022a上运行,仿真结果无水印。
57 0
|
29天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
200 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
129 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
90 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码