R语言用关联规则和聚类模型挖掘处方数据探索药物配伍中的规律

简介: R语言用关联规则和聚类模型挖掘处方数据探索药物配伍中的规律

原文链接:http://tecdat.cn/?p=997

概要

方剂药效与剂量的关系中药不传之秘在于剂量中药配伍规律。拓端数据使用数据挖掘技术对海量的在线医院药物复方历史数据进行智能分析,并从中找出药物配伍的规律。

业务挑战

中医传承过程中,关于生理、病因病机以及疾病的表现和发展规律,都容易记载在书上,也容易理解和传承。然而随着医药科技的不断进步,新特药品的的种类的不断出现,给药物配伍又一次新挑战。同时,为了探索昂贵中药材是否有其他廉价替代品的问题,对药物的配伍规律和性味归经描述来衡量药物的相似度,根据相似度对药物进行聚类。

药物配伍查询解决方案设计

关联规则模型

结合机器学习方法、数据清理、集成、变换和规约等技术对中医药方中原始数据进行了规范化处理,并用关联规则模型对药物配伍关系进行挖掘。

关联规则可以反映一个事物与其他事物之间的相互依存性和关联性使用关联规则挖掘算法,找到中药之间的高频组合以及强关联关系。

得到最常用的药物配伍——对支持度和置信度进行排序

规则前项 规则后项 支持度 置信度 提升度

{附子} => {桂枝} 0.1824324 0.7500000 2.413043\[2\]
{桂枝} => {附子} 0.1824324 0.5869565 2.413043\[3\]
{附子} => {白芍} 0.1689189 0.6944444 1.605903\[4\]
{白芍} => {附子} 0.1689189 0.3906250 1.605903\[5\]
{牛膝} => {杜仲} 0.1689189 0.6756757 1.754386\[6\]
{杜仲} => {牛膝} 0.1689189 0.4385965 1.754386\[7\]
{续断} => {独活} 0.1756757 0.7027027 2.418605\[8\]
{独活} => {续断} 0.1756757 0.6046512 2.418605\[9\]
{续断} => {杜仲} 0.1891892 0.7567568 1.964912\[10\]

用网络图对常用的药物配伍关系进行可视化

image.png

聚类模型

更好的区分不同种类的药物配伍关系——聚类

为了解决昂贵中药材的廉价替代品问题,对药物的配伍规律和性味归经描述来衡量药物的相似度,根据相似度对药物进行聚类。通过理疗措施之间的相似性进行聚类,相当于治疗方案空间上的粗粒化。

网络图对每个种类进行可视化

image.png

image.png

image.png

药物配伍查询系统的实现

通过建立适用于临床的药物配伍查询系统,方便医务人员适时适时查询药物配伍及药品信息,促进临床合理用药。

image.png

最后,随着政府、企业、科研机构加大对智慧医院精准医疗的资源投入,大数据将持续发挥精准医疗发展助推器作用,推动精准医疗产业发展。

相关文章
|
5月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
6月前
|
存储 数据采集 数据处理
R语言数据变换:使用tidyr包进行高效数据整形的探索
【8月更文挑战第29天】`tidyr`包为R语言的数据整形提供了强大的工具。通过`pivot_longer()`、`pivot_wider()`、`separate()`和`unite()`等函数,我们可以轻松地将数据从一种格式转换为另一种格式,以满足不同的分析需求。掌握这些函数的使用,将大大提高我们处理和分析数据的效率。
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
|
5月前
R语言基于表格文件的数据绘制具有多个系列的柱状图与直方图
【9月更文挑战第9天】在R语言中,利用`ggplot2`包可绘制多系列柱状图与直方图。首先读取数据文件`data.csv`,加载`ggplot2`包后,使用`ggplot`函数指定轴与填充颜色,并通过`geom_bar`或`geom_histogram`绘图。参数如`stat`, `position`, `alpha`等可根据需要调整,实现不同系列的图表展示。
|
5月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
5月前
|
机器学习/深度学习 算法 前端开发
R语言基础机器学习模型:深入探索决策树与随机森林
【9月更文挑战第2天】决策树和随机森林作为R语言中基础且强大的机器学习模型,各有其独特的优势和适用范围。了解并熟练掌握这两种模型,对于数据科学家和机器学习爱好者来说,无疑是一个重要的里程碑。希望本文能够帮助您更好地理解这两种模型,并在实际项目中灵活应用。
|
6月前
|
数据采集 机器学习/深度学习 数据挖掘
R语言数据清洗:高效处理缺失值与重复数据的策略
【8月更文挑战第29天】处理缺失值和重复数据是数据清洗中的基础而重要的步骤。在R语言中,我们拥有多种工具和方法来有效地应对这些问题。通过识别、删除或插补缺失值,以及删除重复数据,我们可以提高数据集的质量和可靠性,为后续的数据分析和建模工作打下坚实的基础。 需要注意的是,处理缺失值和重复数据时,我们应根据实际情况和数据特性选择合适的方法,并在处理过程中保持谨慎,以避免引入新的偏差或错误。
|
6月前
|
数据处理
R语言数据合并:掌握`merge`与`dplyr`中`join`的巧妙技巧
【8月更文挑战第29天】如果你已经在使用`dplyr`进行数据处理,那么推荐使用`dplyr::join`进行数据合并,因为它与`dplyr`的其他函数(如`filter()`、`select()`、`mutate()`等)无缝集成,能够提供更加流畅和一致的数据处理体验。如果你的代码中尚未使用`dplyr`,但想要尝试,那么`dplyr::join`将是一个很好的起点。
|
6月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
6月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。