【MySQL实战笔记】 05 | 深入浅出索引(下)-02

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 【4月更文挑战第16天】B+树索引利用最左前缀原则加速检索,即使只是部分字段匹配也能生效。联合索引[name-age]可按最左字段"张"找到记录,并遍历获取结果。优化索引顺序能减少维护成本,通常先考虑复用性。若需独立查询部分字段,则需权衡空间占用,如(name,age)与(age)。索引下推自MySQL5.6起,允许在索引遍历时预过滤条件,减少回表次数,提高效率。

最左前缀原则

B+树这种索引结构可以利用索引的"最左前缀"来定位记录。

使用上文中的[name-age]联合索引分析
2024-04-19-20-47-41-image.png

索引项是按照索引定义里面出现的字段排序的。当需要查询所有姓名是“张三”的人时,可以快速定位到ID4,然后向后遍历得到所有需要的结果。如果是要查所有第一个名字里是“张”的人,也可以用上这个索引,查到第一个符合条件的记录是ID3,然后向后遍历,直到不满足条件为止。

不只是索引的全部定义,只要满足最左前缀,就可以利用索引来加速检索。这个前缀可以是联合索引的最左N个字段,也可以是字符串索引的最左M个字符

思考一个比较经典的问题:在建立联合索引的时候,如果安排索引内的字段顺序?

这里的评估标准是索引的复用能力。因为可以支持最左前缀,当已经有了(a,b)这个联合索引后,一般就不需要单独在a上建立索引了。因此,第一原则是,如果通过调整顺序可以少维护一个索引,那么这个顺序就是优先考虑要采用的

如果又有联合查询,又有基于a,b各自的查询呢?查询条件里只有b的语句,是无法使用(a,b)这个联合索引的,这时候需要同时维护(a,b)和(b)这两个索引。这时候要考虑的原则就是空间了,比如上面的例子里,name字段要比age字段大,就更建议创建(name,age)的联合索引和(age)的单字段索引。

索引下推

在最左前缀原则里,最左前缀可以用于在索引中定位记录。那那些不符合最左前缀的部分会怎么样呢?

还是以市民表的联合索引(name,age)为例。现在的需求是:检索出表里“第一个名字是张,而且年龄是10岁的所有男孩”

select * from tuser where name like '张%' and age=10 and ismale=1;

这个语句在搜索索引树的时候,只能用“张”找到第一个满足条件的记录ID3.然后判断其他条件是否满足。

在MySQL5.6之前,只能从ID3开始一个个回表,到主键索引上找出数据行,再对比字段值。
2024-04-19-21-30-54-image.png

在MySQL5.6以后,引入了索引下推优化,在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。
2024-04-19-21-31-01-image.png

每个虚线箭头表示回表一次。第二种的区别是InnoDB在(name,age)索引内部就判断了age是否等于10,对不等于10的记录,直接判断并跳过。

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
24天前
|
存储 关系型数据库 MySQL
阿里面试:为什么要索引?什么是MySQL索引?底层结构是什么?
尼恩是一位资深架构师,他在自己的读者交流群中分享了关于MySQL索引的重要知识点。索引是帮助MySQL高效获取数据的数据结构,主要作用包括显著提升查询速度、降低磁盘I/O次数、优化排序与分组操作以及提升复杂查询的性能。MySQL支持多种索引类型,如主键索引、唯一索引、普通索引、全文索引和空间数据索引。索引的底层数据结构主要是B+树,它能够有效支持范围查询和顺序遍历,同时保持高效的插入、删除和查找性能。尼恩还强调了索引的优缺点,并提供了多个面试题及其解答,帮助读者在面试中脱颖而出。相关资料可在公众号【技术自由圈】获取。
|
15天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
81 1
|
21天前
|
NoSQL 关系型数据库 MySQL
MySQL与Redis协同作战:优化百万数据查询的实战经验
【10月更文挑战第13天】 在处理大规模数据集时,传统的关系型数据库如MySQL可能会遇到性能瓶颈。为了提升数据处理的效率,我们可以结合使用MySQL和Redis,利用两者的优势来优化数据查询。本文将分享一次实战经验,探讨如何通过MySQL与Redis的协同工作来优化百万级数据统计。
48 5
|
26天前
|
存储 关系型数据库 MySQL
如何在MySQL中进行索引的创建和管理?
【10月更文挑战第16天】如何在MySQL中进行索引的创建和管理?
54 1
|
16天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第26天】数据库作为现代应用系统的核心组件,其性能优化至关重要。本文主要探讨MySQL的索引策略与查询性能调优。通过合理创建索引(如B-Tree、复合索引)和优化查询语句(如使用EXPLAIN、优化分页查询),可以显著提升数据库的响应速度和稳定性。实践中还需定期审查慢查询日志,持续优化性能。
47 0
|
27天前
|
监控 关系型数据库 MySQL
mysql8索引优化
综上所述,深入理解和有效实施这些索引优化策略,是解锁MySQL 8.0数据库高性能查询的关键。
28 0
|
1月前
|
SQL 关系型数据库 MySQL
美团面试:mysql 索引失效?怎么解决? (重点知识,建议收藏,读10遍+)
本文详细解析了MySQL索引失效的多种场景及解决方法,包括破坏最左匹配原则、索引覆盖原则、前缀匹配原则、`ORDER BY`排序不当、`OR`关键字使用不当、索引列上有计算或函数、使用`NOT IN`和`NOT EXISTS`不当、列的比对等。通过实例演示和`EXPLAIN`命令分析,帮助读者深入理解索引失效的原因,并提供相应的优化建议。文章还推荐了《尼恩Java面试宝典》等资源,助力面试者提升技术水平,顺利通过面试。
|
8天前
|
SQL 关系型数据库 MySQL
go语言数据库中mysql驱动安装
【11月更文挑战第2天】
23 4
|
6天前
|
SQL 关系型数据库 MySQL
12 PHP配置数据库MySQL
路老师分享了PHP操作MySQL数据库的方法,包括安装并连接MySQL服务器、选择数据库、执行SQL语句(如插入、更新、删除和查询),以及将结果集返回到数组。通过具体示例代码,详细介绍了每一步的操作流程,帮助读者快速入门PHP与MySQL的交互。
19 1
|
1月前
|
存储 关系型数据库 MySQL
Mysql(4)—数据库索引
数据库索引是用于提高数据检索效率的数据结构,类似于书籍中的索引。它允许用户快速找到数据,而无需扫描整个表。MySQL中的索引可以显著提升查询速度,使数据库操作更加高效。索引的发展经历了从无索引、简单索引到B-树、哈希索引、位图索引、全文索引等多个阶段。
61 3
Mysql(4)—数据库索引