《Pandas 简易速速上手小册》第6章:Pandas 时间序列分析(2024 最新版)

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 《Pandas 简易速速上手小册》第6章:Pandas 时间序列分析(2024 最新版)

c8d8ed47f9a1368db458c1960ee26c7.png

6.1 时间序列数据基础

时间序列数据是在连续时间点或者时间段上收集的数据点,常用于分析趋势、做出预测等。

6.1.1 基础知识

  1. 时间戳和时间间隔: 时间戳代表某一具体的瞬间,而时间间隔则表示一段时间。
  2. 解析时间数据: 通常需要将字符串格式的时间数据转换成 Python 的 datetime 对象以便处理。
  3. 设置时间索引: 在 Pandas 中,将时间数据设置为 DataFrame 的索引可以方便地进行时间序列分析。

6.1.2 重点案例:股票市场分析

假设你有一份股票市场的历史数据,包含日期和当日的收盘价,你需要分析股价随时间的变化趋势。

数据准备

import pandas as pd
# 示例股票市场数据
stock_data = {
    'date': ['2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04'],
    'close_price': [100, 105, 103, 108]
}
stock_df = pd.DataFrame(stock_data)

处理时间序列数据

# 将字符串日期转换为 datetime 对象
stock_df['date'] = pd.to_datetime(stock_df['date'])
# 将日期设置为索引
stock_df.set_index('date', inplace=True)

6.1.3 拓展案例一:温度变化分析

假设你有一份每日温度记录数据,需要分析温度随时间的变化。

数据准备

# 示例温度记录数据
temperature_data = {
    'date': ['2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04'],
    'temperature': [22, 23, 21, 24]
}
temperature_df = pd.DataFrame(temperature_data)

处理时间序列数据

# 将字符串日期转换为 datetime 对象并设置为索引
temperature_df['date'] = pd.to_datetime(temperature_df['date'])
temperature_df.set_index('date', inplace=True)

6.1.4 拓展案例二:电商平台日销售额分析

分析一份电商平台每日销售额数据,观察销售额随时间的变化。

数据准备

# 示例电商平台销售数据
sales_data = {
    'date': ['2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04'],
    'daily_sales': [2000, 3000, 2500, 3200]
}
sales_df = pd.DataFrame(sales_data)

处理时间序列数据

# 将日期转换为 datetime 对象并设置为索引
sales_df['date'] = pd.to_datetime(sales_df['date'])
sales_df.set_index('date', inplace=True)

通过这些案例,我们展示了如何处理和分析时间序列数据。从股市趋势分析到温度变化观察,再到电商销售额的时间分析,掌握时间序列数据的基础操作是进行这些分析的关键。


6.2 日期与时间功能

在时间序列分析中,处理和操作日期与时间是常见的需求。Pandas 提供了丰富的日期与时间功能,使得这些操作变得简单。

6.2.1 基础知识

  1. Datetime 类型: Pandas 使用 datetime64 类型来处理日期和时间。可以使用 pd.to_datetime() 将字符串转换成 datetime64 类型。
  2. 时间索引: 设置时间索引后,可以使用时间索引来选择、过滤和重采样数据。
  3. 时间偏移和频率: Pandas 允许使用时间偏移和频率来进行日期计算,如加减天数、找到下一个月的开始等。

6.2.2 重点案例:活动日志分析

假设你有一份网站的活动日志,记录了每次活动的日期和时间,你需要分析特定时间段内的活动。

数据准备

import pandas as pd
# 示例活动日志数据
log_data = {
    'timestamp': ['2023-01-01 12:00', '2023-01-01 12:30', '2023-01-02 13:00', '2023-01-02 14:00'],
    'activity': ['login', 'view', 'purchase', 'logout']
}
log_df = pd.DataFrame(log_data)

处理时间序列数据

# 将字符串转换为 datetime 对象
log_df['timestamp'] = pd.to_datetime(log_df['timestamp'])
# 设置时间索引
log_df.set_index('timestamp', inplace=True)
# 选择特定日期的活动
activities_on_first = log_df['2023-01-01']

6.2.3 拓展案例一:工作日计算

计算一个时间范围内的工作日总数。

数据准备

# 定义一个时间范围
date_range = pd.date_range(start='2023-01-01', end='2023-01-31')

计算工作日

# 计算工作日
workdays = date_range.to_series().map(lambda x: 0 if x.weekday() >= 5 else 1).sum()

6.2.4 拓展案例二:股票市场交易日数据重采样

假设你有一份股票市场的日交易数据,需要按周计算平均交易量。

数据准备

# 示例股票市场交易数据
trade_data = {
    'date': pd.date_range(start='2023-01-01', periods=30),
    'volume': pd.np.random.randint(1000, 5000, size=30)
}
trade_df = pd.DataFrame(trade_data).set_index('date')

重采样计算周平均交易量

# 按周重采样并计算平均交易量
weekly_avg_volume = trade_df.resample('W').mean()

通过这些案例,我们展示了如何利用 Pandas 的日期与时间功能进行分析,从处理具体的活动日志到计算工作日总数,再到重采样股票市场交易数据。掌握这些技巧,你可以更灵活地处理时间序列数据,提取有价值的时间维度信息。


6.3 时间序列的高级应用

探索时间序列数据的高级应用可以帮助我们深入理解数据的时间维度,从而做出更准确的分析和预测。

6.3.1 基础知识

  1. 时间序列缺失数据处理: 时间序列数据可能会有缺失值,处理方法包括填充和插值。
  2. 重采样和频率转换: 通过改变时间序列的频率(如从日到月),可以更好地分析趋势。
  3. 滚动窗口和扩展窗口操作: 滚动窗口(rolling window)操作允许我们计算如移动平均等统计量,扩展窗口(expanding window)则从时间序列起点累积到当前点。

6.3.2 重点案例:金融市场趋势分析

假设你有一份金融市场的每日股价数据,需要分析股价的移动平均趋势。

数据准备

import pandas as pd
import numpy as np
# 示例股价数据
date_range = pd.date_range(start='2023-01-01', periods=90)
stock_prices = np.random.normal(100, 10, size=90).cumsum()
stock_df = pd.DataFrame({'price': stock_prices}, index=date_range)

处理时间序列数据

# 计算7日移动平均
stock_df['7_day_avg'] = stock_df['price'].rolling(window=7).mean()
# 计算30日移动平均
stock_df['30_day_avg'] = stock_df['price'].rolling(window=30).mean()

6.3.3 拓展案例一:能源消耗季节性分析

分析一份每小时记录的能源消耗数据,观察消耗量的季节性变化。

数据准备

# 示例能源消耗数据
hours_in_year = pd.date_range(start='2023-01-01', periods=8760, freq='H')
energy_consumption = np.random.normal(50, 15, size=8760).cumsum()
energy_df = pd.DataFrame({'consumption': energy_consumption}, index=hours_in_year)

季节性分析

# 按月重采样计算平均能源消耗
monthly_avg_consumption = energy_df.resample('M').mean()

6.3.4 拓展案例二:零售销售的扩展窗口分析

假设你有一份零售商每日销售额的数据,需要分析自年初以来销售额的累计总和。

数据准备

# 示例零售销售数据
days_in_year = pd.date_range(start='2023-01-01', periods=365)
daily_sales = np.random.randint(1000, 5000, size=365)
sales_df = pd.DataFrame({'sales': daily_sales}, index=days_in_year)

扩展窗口分析

# 计算累计销售额
sales_df['cumulative_sales'] = sales_df['sales'].expanding().sum()

通过这些案例,我们展示了时间序列数据分析的高级应用,包括处理缺失数据、重采样、以及滚动和扩展窗口操作。这些技巧可以帮助我们深入理解数据的时间维度,从而做出更准确的分析和预测。

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
1月前
|
数据挖掘 索引 Python
如何在Python中,Pandas库实现对数据的时间序列分析?
【4月更文挑战第21天】Pandas在Python中提供了丰富的时间序列分析功能,如创建时间序列`pd.date_range()`,转换为DataFrame,设置时间索引`set_index()`,重采样`resample()`(示例:按月`'M'`和季度`'Q'`),移动窗口计算`rolling()`(如3个月移动平均)以及季节性调整`seasonal_decompose()`。这些工具适用于各种时间序列数据分析任务。
31 2
|
15天前
|
数据采集 存储 数据可视化
Pandas高级教程:数据清洗、转换与分析
Pandas是Python的数据分析库,提供Series和DataFrame数据结构及数据分析工具,便于数据清洗、转换和分析。本教程涵盖Pandas在数据清洗(如缺失值、重复值和异常值处理)、转换(数据类型转换和重塑)和分析(如描述性统计、分组聚合和可视化)的应用。通过学习Pandas,用户能更高效地处理和理解数据,为数据分析任务打下基础。
37 3
|
1月前
|
数据采集 数据可视化 数据处理
利用Python和Pandas库实现高效的数据处理与分析
在大数据和人工智能时代,数据处理与分析已成为不可或缺的一环。Python作为一门强大的编程语言,结合Pandas库,为数据科学家和开发者提供了高效、灵活的数据处理工具。本文将介绍Pandas库的基本功能、优势,并通过实际案例展示如何使用Pandas进行数据清洗、转换、聚合等操作,以及如何利用Pandas进行数据可视化,旨在帮助读者深入理解并掌握Pandas在数据处理与分析中的应用。
|
28天前
|
数据采集 SQL 数据处理
Python中的Pandas库:数据处理与分析的利器
Python中的Pandas库:数据处理与分析的利器
33 0
|
1月前
|
数据采集 机器学习/深度学习 数据可视化
《Pandas 简易速速上手小册》第10章:Pandas 实战案例(2024 最新版)
《Pandas 简易速速上手小册》第10章:Pandas 实战案例(2024 最新版)
30 2
|
1月前
|
数据可视化 数据挖掘 定位技术
《Pandas 简易速速上手小册》第9章:Pandas 数据可视化(2024 最新版)
《Pandas 简易速速上手小册》第9章:Pandas 数据可视化(2024 最新版)
47 2
|
1月前
|
数据采集 数据挖掘 数据处理
《Pandas 简易速速上手小册》第8章:Pandas 高级数据分析技巧(2024 最新版)
《Pandas 简易速速上手小册》第8章:Pandas 高级数据分析技巧(2024 最新版)
41 1
|
1月前
|
数据采集 机器学习/深度学习 自然语言处理
《Pandas 简易速速上手小册》第7章:Pandas 文本和类别数据处理(2024 最新版)
《Pandas 简易速速上手小册》第7章:Pandas 文本和类别数据处理(2024 最新版)
36 1
|
1月前
|
数据采集 SQL 数据可视化
《Pandas 简易速速上手小册》第5章:Pandas 数据合并与重塑(2024 最新版)
《Pandas 简易速速上手小册》第5章:Pandas 数据合并与重塑(2024 最新版)
34 1
|
4天前
|
数据采集 机器学习/深度学习 数据可视化
利用Python和Pandas库构建高效的数据分析流程
在数据驱动的时代,数据分析已成为企业决策的关键环节。本文介绍如何利用Python编程语言及其强大的数据分析库Pandas,构建一套高效且可扩展的数据分析流程。与常规的数据分析流程不同,本文不仅涵盖数据加载、清洗、转换等基础步骤,还强调数据可视化、模型探索与评估等高级分析技巧,并通过实际案例展示如何在Python中实现这些步骤,为数据分析师提供一套完整的数据分析解决方案。

相关实验场景

更多