java多线程(二)线程池

简介: java多线程(二)线程池

java线程池

Java线程池是一种预先创建一定数量的线程,并将任务提交给这些线程执行的机制。线程池可以避免频繁创建和销毁线程,提高程序的性能和响应速度。

为什么要创建线程池:

  1. 降低资源消耗:通过重复利用已创建的线程,避免线程的频繁创建和销毁,降低资源消耗。
  2. 提高响应速度:当任务到达时,任务不需要等待线程创建就能立即执行。
  3. 提高线程的可管理性:线程池可以进行统一的分配、调优和监控,有利于提高线程的可管理性。

线程池应用场景:

  1. 快速响应用户请求(IO密集型任务):如用户要查看商品信息,需要将商品维度的一系列信息聚合起来展示给用户。通过使用线程池,可以快速响应用户请求。
  2. 快速处理批量任务(CPU密集型任务):如统计某个报表,需要计算出全国各个门店中有哪些商品有某种属性,用于后续营销策略的分析。通过使用线程池,可以快速处理批量任务。

如何创建线程池:

Java中的线程池可以通过以下几种方式创建:

  1. Executors.newFixedThreadPool:创建一个固定大小的线程池,可控制并发的线程数,超出的线程会在队列中等待。方法只有一个参数,即线程池的大小。
  2. Executors.newCachedThreadPool:创建一个可缓存的线程池,若线程数超过处理所需,缓存一段时间后会回收,若线程数不够,则新建线程。
  3. Executors.newSingleThreadExecutor:创建一个单个线程数的线程池,它可以保证先进先出的执行顺序。
  4. Executors.newScheduledThreadPool:创建一个可以执行延迟任务的线程池。
  5. ThreadPoolExecutor:通过ThreadPoolExecutor类创建线程池,可以自定义线程池的参数,如核心线程数、最大线程数、队列类型等。

有什么区别:

使用 Executors 工厂类中的 newCachedThreadPool() 和 newFixedThreadPool() 方法:

优点:

- 使用起来比较简单,不需要自己手动管理线程池的状态;

- 可以快速创建线程池。

缺点:

- 无法自定义线程池的大小和饱和策略;

- 不够灵活。

使用 Executors 工厂类中的 newSingleThreadExecutor() 方法:

优点:

- 创建单个线程的线程池;

- 适用于需要顺序执行任务的场景。

缺点:

- 无法自定义线程池的大小和饱和策略;

- 不够灵活。

使用 ThreadPoolExecutor 类来创建线程池:

参数:

- corePoolSize:核心线程数

- maximumPoolSize:最大线程数

- keepAliveTime:线程存活时间

- unit:时间单位

- workQueue:任务队列

- threadFactory:线程工厂

- handler:饱和策略

优点:

- 可以根据实际情况来自定义线程池的大小、任务队列等;

- 可以灵活地设置饱和策略。

缺点:

- 对于不熟悉线程池的开发人员来说,使用起来比较麻烦;

- 需要手动管理线程池的状态。

  1. 核心线程数:指线程池中保持活动的最小线程数。如果线程池中的当前线程数小于核心线程数,则会在需要时创建新的线程。
  2. 最大线程数:指线程池中允许的最大线程数。如果队列满了,并且当前线程数已经达到最大线程数,则会在需要时创建新的线程。
  3. 队列类型:指用于存储待执行任务的队列类型。常见的队列类型有直接提交队列、有界队列、无界队列等。
  4. 拒绝策略:指当任务队列已满,且所有线程都在工作,但仍然无法处理新任务时的处理策略。常见的拒绝策略有抛出异常、拒绝任务、阻塞任务等。

以上几种方式分别对应不同的应用场景和需求。其中,Executors类提供了一种简单的方式来创建线程池,但它的参数相对固定,不适合进行复杂的配置。而ThreadPoolExecutor类则提供了更多的参数选项,可以灵活地配置线程池的各种属性,适用于更为复杂的场景。

不同线程池对应的应用场景

  1. Executors.newFixedThreadPool:适用于需要控制并发线程数量的场景,例如,当需要确保每个请求都能得到响应时,或者当请求量很大时,可以控制并发线程数量,避免系统过载。-------需要创建固定数量的线程来执行长时间运行的任务;
  2. Executors.newCachedThreadPool:适用于执行大量短期异步任务,例如,Web请求处理或短期的后台任务。这种线程池能快速创建和销毁线程,以应对大量突发任务。大量短时间的任务,如网络请求
  3. Executors.newSingleThreadExecutor:适用于需要保证任务按照提交顺序执行的场景,例如,当需要保证任务的串行执行时。需要顺序执行任务的场景,如一个线程代表一个用户请求
  4. Executors.newScheduledThreadPool:适用于需要定时或周期性执行任务的场景,例如,定时任务、定时备份等。
  5. ThreadPoolExecutor:适用于需要自定义线程池参数的场景,例如,需要根据任务的特性(如优先级、执行时间等)来调整线程池的配置。这种线程池提供了更多的灵活性和控制性。复杂的应用场景,需要根据实际情况来动态地调整线程池的大小和饱和策略,如一个 Web 服务器上服务对多个用户的请求时

案例

 
 
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Future;
 
/**
 * 线程处理类
 */
public class ExecutorProcessPool {
 
    private ExecutorService executor;
    private static ExecutorProcessPool pool = new ExecutorProcessPool();
    private final int threadMax = 10;
 
    private ExecutorProcessPool() {
        System.out.println("threadMax>>>>>>>" + threadMax);
        executor = ExecutorServiceFactory.getInstance().createFixedThreadPool(threadMax);
    }
 
    public static ExecutorProcessPool getInstance() {
        return pool;
    }
 
    /**
     * 关闭线程池,这里要说明的是:调用关闭线程池方法后,线程池会执行完队列中的所有任务才退出
     */
    public void shutdown() {
        executor.shutdown();
    }
 
    /**
     * 提交任务到线程池,可以接收线程返回值
     *
     * @param task
     * @return
     */
    public Future<?> submit(Runnable task) {
        return executor.submit(task);
    }
 
    /**
     * 提交任务到线程池,可以接收线程返回值
     *
     * @param task
     * @return
     */
    public Future<?> submit(Callable<?> task) {
        return executor.submit(task);
    }
 
    /**
     * 直接提交任务到线程池,无返回值
     *
     * @param task
     */
    public void execute(Runnable task) {
        executor.execute(task);
    }
 
}
 
 
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.atomic.AtomicInteger;
 
 
/**
 * 线程池构造工厂
 */
public class ExecutorServiceFactory {
    private static ExecutorServiceFactory executorFactory = new ExecutorServiceFactory();
    /**
     * 定时任务线程池
     */
    private ExecutorService executors;
 
    private ExecutorServiceFactory() {
    }
 
    /**
     * 获取ExecutorServiceFactory
     *
     * @return
     */
    public static ExecutorServiceFactory getInstance() {
        return executorFactory;
    }
 
    /**
     * 创建一个线程池,它可安排在给定延迟后运行命令或者定期地执行。
     *
     * @return
     */
    public ExecutorService createScheduledThreadPool() {
        // CPU个数
        int availableProcessors = Runtime.getRuntime().availableProcessors();
        // 创建
        executors = Executors.newScheduledThreadPool(availableProcessors * 10, getThreadFactory());
        return executors;
    }
 
    /**
     * 创建一个使用单个 worker 线程的
     * Executor,以无界队列方式来运行该线程。(注意,如果因为在关闭前的执行期间出现失败而终止了此单个线程,
     * 那么如果需要,一个新线程将代替它执行后续的任务)。可保证顺序地执行各个任务,并且在任意给定的时间不会有多个线程是活动的。与其他等效的
     * newFixedThreadPool(1) 不同,可保证无需重新配置此方法所返回的执行程序即可使用其他的线程。
     *
     * @return
     */
    public ExecutorService createSingleThreadExecutor() {
        // 创建
        executors = Executors.newSingleThreadExecutor(getThreadFactory());
        return executors;
    }
 
    /**
     * 创建一个可根据需要创建新线程的线程池,但是在以前构造的线程可用时将重用它们。对于执行很多短期异步任务的程序而言,这些线程池通常可提高程序性能。调用
     * execute 将重用以前构造的线程(如果线程可用)。如果现有线程没有可用的,则创建一个新线程并添加到池中。终止并从缓存中移除那些已有 60
     * 秒钟未被使用的线程。因此,长时间保持空闲的线程池不会使用任何资源。注意,可以使用 ThreadPoolExecutor
     * 构造方法创建具有类似属性但细节不同(例如超时参数)的线程池。
     *
     * @return
     */
    public ExecutorService createCachedThreadPool() {
        // 创建
        executors = Executors.newCachedThreadPool(getThreadFactory());
        return executors;
    }
 
    /**
     * 创建一个可重用固定线程数的线程池,以共享的无界队列方式来运行这些线程。在任意点,在大多数 nThreads
     * 线程会处于处理任务的活动状态。如果在所有线程处于活动状态时提交附加任务
     * ,则在有可用线程之前,附加任务将在队列中等待。如果在关闭前的执行期间由于失败而导致任何线程终止
     * ,那么一个新线程将代替它执行后续的任务(如果需要)。在某个线程被显式地关闭之前,池中的线程将一直存在。
     *
     * @return
     */
    public ExecutorService createFixedThreadPool(int count) {
        // 创建
        executors = Executors.newFixedThreadPool(count, getThreadFactory());
        return executors;
    }
 
 
    /**
     * 获取线程池工厂
     *
     * @return
     */
    private ThreadFactory getThreadFactory() {
        return new ThreadFactory() {
            AtomicInteger sn = new AtomicInteger();
 
            public Thread newThread(Runnable r) {
                SecurityManager s = System.getSecurityManager();
                ThreadGroup group = (s != null) ? s.getThreadGroup() : Thread.currentThread().getThreadGroup();
                Thread t = new Thread(group, r);
                t.setName("任务线程 - " + sn.incrementAndGet());
                return t;
            }
        };
    }
}
 
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.concurrent.Callable;
import java.util.concurrent.TimeUnit;
 
/**
 * 测试类
 */
public class ExecutorTest {
 
    public static void main(String[] args) {
 
        ExecutorProcessPool pool = ExecutorProcessPool.getInstance();
 
       /* for (int i = 0; i < 200; i++) {
            Future<?> future = pool.submit(new ExcuteTask1(i+""));
//          try {
//              如果接收线程返回值,future.get() 会阻塞,如果这样写就是一个线程一个线程执行。所以非特殊情况不建议使用接收返回值的。
//              System.out.println(future.get());
//          } catch (Exception e) {
//              e.printStackTrace();
//          }
        }*/
        List<String> list = new ArrayList(Arrays.asList("a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "n", "m", "o", "p"));
        for (int i = 0; i < list.size(); i++) {
            String s = list.get(i);
            pool.execute(new ExcuteTask2(s + ""));
        }
 
        //关闭线程池,如果是需要长期运行的线程池,不用调用该方法。
        //监听程序退出的时候最好执行一下。
        List<String> list2 = new ArrayList(Arrays.asList("的", "飞", "个", "个", "3"));
        for (int i = 0; i < list2.size(); i++) {
            String s = list2.get(i);
            pool.execute(new ExcuteTask2(s + ""));
        }
//        pool.shutdown();
    }
 
    /**
     * 执行任务1,实现Callable方式
     */
    static class ExcuteTask1 implements Callable<String> {
        private String taskName;
 
        public ExcuteTask1(String taskName) {
            this.taskName = taskName;
        }
 
        @Override
        public String call() throws Exception {
            try {
//              Java 6/7最佳的休眠方法为TimeUnit.MILLISECONDS.sleep(100);
//              最好不要用 Thread.sleep(100);
                TimeUnit.MILLISECONDS.sleep((int) (Math.random() * 1000));// 1000毫秒以内的随机数,模拟业务逻辑处理
            } catch (Exception e) {
                e.printStackTrace();
            }
            System.out.println("-------------这里执行业务逻辑,Callable TaskName = " + taskName + "-------------");
            return ">>>>>>>>>>>>>线程返回值,Callable TaskName = " + taskName + "<<<<<<<<<<<<<<";
        }
    }
 
    /**
     * 执行任务2,实现Runable方式
     */
    static class ExcuteTask2 implements Runnable {
        private String taskName;
 
        public ExcuteTask2(String taskName) {
            this.taskName = taskName;
        }
 
        @Override
        public void run() {
            try {
                TimeUnit.MILLISECONDS.sleep((int) (Math.random() * 1000));// 1000毫秒以内的随机数,模拟业务逻辑处理
            } catch (Exception e) {
                e.printStackTrace();
            }
            System.out.println(Thread.currentThread().getName() + "-------------这里执行业务逻辑,Runnable TaskName = " + taskName + "-------------");
        }
 
    }
}

输出结果


相关文章
|
2天前
|
监控 Kubernetes Java
阿里面试:5000qps访问一个500ms的接口,如何设计线程池的核心线程数、最大线程数? 需要多少台机器?
本文由40岁老架构师尼恩撰写,针对一线互联网企业的高频面试题“如何确定系统的最佳线程数”进行系统化梳理。文章详细介绍了线程池设计的三个核心步骤:理论预估、压测验证和监控调整,并结合实际案例(5000qps、500ms响应时间、4核8G机器)给出具体参数设置建议。此外,还提供了《尼恩Java面试宝典PDF》等资源,帮助读者提升技术能力,顺利通过大厂面试。关注【技术自由圈】公众号,回复“领电子书”获取更多学习资料。
|
15天前
|
监控 Java
java异步判断线程池所有任务是否执行完
通过上述步骤,您可以在Java中实现异步判断线程池所有任务是否执行完毕。这种方法使用了 `CompletionService`来监控任务的完成情况,并通过一个独立线程异步检查所有任务的执行状态。这种设计不仅简洁高效,还能确保在大量任务处理时程序的稳定性和可维护性。希望本文能为您的开发工作提供实用的指导和帮助。
71 17
|
26天前
|
Java
Java—多线程实现生产消费者
本文介绍了多线程实现生产消费者模式的三个版本。Version1包含四个类:`Producer`(生产者)、`Consumer`(消费者)、`Resource`(公共资源)和`TestMain`(测试类)。通过`synchronized`和`wait/notify`机制控制线程同步,但存在多个生产者或消费者时可能出现多次生产和消费的问题。 Version2将`if`改为`while`,解决了多次生产和消费的问题,但仍可能因`notify()`随机唤醒线程而导致死锁。因此,引入了`notifyAll()`来唤醒所有等待线程,但这会带来性能问题。
Java—多线程实现生产消费者
|
11天前
|
缓存 安全 算法
Java 多线程 面试题
Java 多线程 相关基础面试题
|
28天前
|
安全 Java Kotlin
Java多线程——synchronized、volatile 保障可见性
Java多线程中,`synchronized` 和 `volatile` 关键字用于保障可见性。`synchronized` 保证原子性、可见性和有序性,通过锁机制确保线程安全;`volatile` 仅保证可见性和有序性,不保证原子性。代码示例展示了如何使用 `synchronized` 和 `volatile` 解决主线程无法感知子线程修改共享变量的问题。总结:`volatile` 确保不同线程对共享变量操作的可见性,使一个线程修改后,其他线程能立即看到最新值。
|
28天前
|
消息中间件 缓存 安全
Java多线程是什么
Java多线程简介:本文介绍了Java中常见的线程池类型,包括`newCachedThreadPool`(适用于短期异步任务)、`newFixedThreadPool`(适用于固定数量的长期任务)、`newScheduledThreadPool`(支持定时和周期性任务)以及`newSingleThreadExecutor`(保证任务顺序执行)。同时,文章还讲解了Java中的锁机制,如`synchronized`关键字、CAS操作及其实现方式,并详细描述了可重入锁`ReentrantLock`和读写锁`ReadWriteLock`的工作原理与应用场景。
|
28天前
|
安全 Java 编译器
深入理解Java中synchronized三种使用方式:助您写出线程安全的代码
`synchronized` 是 Java 中的关键字,用于实现线程同步,确保多个线程互斥访问共享资源。它通过内置的监视器锁机制,防止多个线程同时执行被 `synchronized` 修饰的方法或代码块。`synchronized` 可以修饰非静态方法、静态方法和代码块,分别锁定实例对象、类对象或指定的对象。其底层原理基于 JVM 的指令和对象的监视器,JDK 1.6 后引入了偏向锁、轻量级锁等优化措施,提高了性能。
54 3
|
28天前
|
存储 安全 Java
Java多线程编程秘籍:各种方案一网打尽,不要错过!
Java 中实现多线程的方式主要有四种:继承 Thread 类、实现 Runnable 接口、实现 Callable 接口和使用线程池。每种方式各有优缺点,适用于不同的场景。继承 Thread 类最简单,实现 Runnable 接口更灵活,Callable 接口支持返回结果,线程池则便于管理和复用线程。实际应用中可根据需求选择合适的方式。此外,还介绍了多线程相关的常见面试问题及答案,涵盖线程概念、线程安全、线程池等知识点。
153 2
|
5月前
|
存储 监控 Java
Java多线程优化:提高线程池性能的技巧与实践
Java多线程优化:提高线程池性能的技巧与实践
151 1
|
8月前
|
设计模式 监控 Java
Java多线程基础-11:工厂模式及代码案例之线程池(一)
本文介绍了Java并发框架中的线程池工具,特别是`java.util.concurrent`包中的`Executors`和`ThreadPoolExecutor`类。线程池通过预先创建并管理一组线程,可以提高多线程任务的效率和响应速度,减少线程创建和销毁的开销。
260 2