ARIMA模型,ARIMAX模型预测冰淇淋消费时间序列数据

简介: ARIMA模型,ARIMAX模型预测冰淇淋消费时间序列数据

原文链接:http://tecdat.cn/?p=22511

标准的ARIMA(移动平均自回归模型)模型允许只根据预测变量的过去值进行预测。该模型假定一个变量的未来的值线性地取决于其过去的值,以及过去(随机)影响的值。ARIMAX模型是ARIMA模型的一个扩展版本。它还包括其他独立(预测)变量。该模型也被称为向量ARIMA或动态回归模型。

ARIMAX模型类似于多变量回归模型,但允许利用回归残差中可能存在的自相关来提高预测的准确性。

本文提供了一个进行ARIMAX模型预测的练习。还检查了回归系数的统计学意义。

这些练习使用了冰淇淋消费数据。该数据集包含以下变量。

  • 冰淇淋消费(人均)
  • 每周的平均家庭收入
  • 冰淇淋的价格
  • 平均温度。

观测数据的数量为30个。它们对应的是1951年3月18日至1953年7月11日这一时间段内的四周时间。

练习1

加载数据集,并绘制变量cons(冰淇淋消费)、temp(温度)和收入。

image.png

ggplot(df, aes(x = X, y = income)) +
  ylab("收入") +
  xlab("时间") +
grid.arrange(p1, p2, p3, ncol=1, nrow=3)

image.png

练习 2

对冰淇淋消费数据估计ARIMA模型。然后将该模型作为输入传给预测函数,得到未来6个时期的预测数据。

auto.arima(cons)

image.png

fcast\_cons <- forecast(fit\_cons, h = 6)

image.png

练习3

绘制得到的预测图。

image.png


练习4

找出拟合的ARIMA模型的平均绝对误差(MASE)。

accuracy

image.png

练习5

为消费数据估计一个扩展的ARIMA模型,将温度变量作为一个额外的回归因子(使用auto.arima函数)。然后对未来6个时期进行预测(注意这个预测需要对期望温度进行假设;假设未来6个时期的温度将由以下向量表示:

fcast_temp <- c(70.5, 66, 60.5, 45.5, 36, 28))

绘制获得的预测图。

image.png

练习6

输出获得的预测摘要。找出温度变量的系数,它的标准误差,以及预测的MASE。将MASE与初始预测的MASE进行比较。

summary(fca)

image.png

温度变量的系数是0.0028

该系数的标准误差为0.0007

平均绝对比例误差为0.7354048,小于初始模型的误差(0.8200619)。

练习7

检查温度变量系数的统计意义。该系数在5%的水平上是否有统计学意义?

test(fit)

image.png

练习8

估计ARIMA模型的函数可以输入更多的附加回归因子,但只能以矩阵的形式输入。创建一个有以下几列的矩阵。

温度变量的值。

收入变量的值。

滞后一期的收入变量的值。

滞后两期的收入变量的值。

输出该矩阵。

注意:最后三列可以通过在收入变量值的向量中添加两个NA来创建,并将得到的向量作为嵌入函数的输入(维度参数等于要创建的列数)。

vars <- cbind(temp, income)
print(vars)

image.png

练习9

使用获得的矩阵来拟合三个扩展的ARIMA模型,使用以下变量作为额外的回归因子。

温度、收入。

温度、收入的滞后期为0、1。

温度,滞后期为0、1、2的收入。

检查每个模型的摘要,并找到信息准则(AIC)值最低的模型。

注意AIC不能用于比较具有不同阶数的ARIMA模型,因为观察值的数量不同。例如,非差分模型ARIMA(p,0,q)的AIC值不能与差分模型ARIMA(p,1,q)的相应值进行比较。

auto.arima(cons, xreg = var)
print(fit0$aic)

image.png

可以使用AIC,因为各模型的参数阶数相同(0)。

AIC值最低的模型是第一个模型。

它的AIC等于-113.3。

练习10

使用上一练习中发现的模型对未来6个时期进行预测,并绘制预测图。预测需要一个未来6个时期的期望温度和收入的矩阵;使用temp变量和以下期望收入值创建矩阵:91, 91, 93, 96, 96, 96。

找出该模型的平均绝对比例误差,并与本练习集中前两个模型的误差进行比较。

image.png

image.png

带有两个外部回归因子的模型具有最低的 平均绝对比例误差(0.528)

相关文章
时间序列分析实战(二):时序的ARMA模型拟合与预测
时间序列分析实战(二):时序的ARMA模型拟合与预测
|
8月前
|
机器学习/深度学习
数据分享|R语言广义线性模型GLM:线性最小二乘、对数变换、泊松、二项式逻辑回归分析冰淇淋销售时间序列数据和模拟-1
数据分享|R语言广义线性模型GLM:线性最小二乘、对数变换、泊松、二项式逻辑回归分析冰淇淋销售时间序列数据和模拟
|
8月前
R语言用ARIMA模型,ARIMAX模型预测冰淇淋消费时间序列数据
R语言用ARIMA模型,ARIMAX模型预测冰淇淋消费时间序列数据
R语言用ARIMA模型,ARIMAX模型预测冰淇淋消费时间序列数据
|
8月前
|
机器学习/深度学习 人工智能 算法
数据分享|R语言广义线性模型GLM:线性最小二乘、对数变换、泊松、二项式逻辑回归分析冰淇淋销售时间序列数据和模拟-2
数据分享|R语言广义线性模型GLM:线性最小二乘、对数变换、泊松、二项式逻辑回归分析冰淇淋销售时间序列数据和模拟
|
8月前
|
机器学习/深度学习 Python
【视频】ARIMA时间序列模型原理和R语言ARIMAX预测实现案例
【视频】ARIMA时间序列模型原理和R语言ARIMAX预测实现案例
|
8月前
|
机器学习/深度学习 数据挖掘 vr&ar
R语言时间序列:ARIMA / GARCH模型的交易策略在外汇市场预测应用
R语言时间序列:ARIMA / GARCH模型的交易策略在外汇市场预测应用
|
8月前
R语言多元时间序列滚动预测:ARIMA、回归、ARIMAX模型分析
R语言多元时间序列滚动预测:ARIMA、回归、ARIMAX模型分析
|
8月前
|
算法
R语言状态空间模型和卡尔曼滤波预测酒精死亡人数时间序列
R语言状态空间模型和卡尔曼滤波预测酒精死亡人数时间序列
|
8月前
ARIMA、ARIMAX、 动态回归和OLS 回归预测多元时间序列
ARIMA、ARIMAX、 动态回归和OLS 回归预测多元时间序列
ARIMA、ARIMAX、 动态回归和OLS 回归预测多元时间序列
|
8月前
|
机器学习/深度学习 算法 数据挖掘
R语言气象模型集成预报:神经网络、回归、svm、决策树用环流因子预测降雨降水数据
R语言气象模型集成预报:神经网络、回归、svm、决策树用环流因子预测降雨降水数据