ARMA-EGARCH模型、集成预测算法对SPX实际波动率进行预测

本文涉及的产品
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生网关 MSE Higress,422元/月
简介: ARMA-EGARCH模型、集成预测算法对SPX实际波动率进行预测

介绍

本文比较了几个时间序列模型,以预测SP500指数的每日实际波动率。基准是SPX日收益序列的ARMA-EGARCH模型。将其与GARCH模型进行比较  。最后,提出了集合预测算法。

假设条件

实际波动率是看不见的,因此我们只能对其进行估算。这也是波动率建模的难点。如果真实值未知,则很难判断预测质量。尽管如此,研究人员为实际波动率开发了估算模型。Andersen,Bollerslev Diebold(2008)  和  Barndorff-Nielsen and Shephard(2007)  以及  Shephard and Sheppard(2009)  提出了一类基于高频的波动率(HEAVY)模型,作者认为HEAVY模型给出了  很好的  估计。

假设:HEAVY实现的波动率估算器无偏且有效。

在下文中,将HEAVY估计量作为  观察到的已实现波动率(实际波动率) 来确定预测性能。

数据来源

  • SPX每日数据(平仓收益)
  • SPX盘中高频数据(HEAVY模型估计)
  • VIX
  • VIX衍生品(VIX期货)

在本文中,我主要关注前两个。

数据采集

实际波动率估计和每日收益

我实现了Shephard和Sheppard的模型,并估计了SPX的实际量

head(SPXdata)


SPX2.rv       SPX2.r     SPX2.rs SPX2.nobs SPX2.open
2000-01-03 0.000157240 -0.010103618 0.000099500      1554  34191.16
2000-01-04 0.000298147 -0.039292183 0.000254283      1564  34195.04
2000-01-05 0.000307226  0.001749195 0.000138133      1552  34196.70
2000-01-06 0.000136238  0.001062120 0.000062000      1561  34191.43
2000-01-07 0.000092700  0.026022074 0.000024100      1540  34186.14
2000-01-10 0.000117787  0.010537636 0.000033700      1573  34191.50
           SPX2.highlow SPX2.highopen SPX2.openprice SPX2.closeprice
2000-01-03   0.02718625   0.005937756        1469.25         1454.48
2000-01-04   0.04052226   0.000000000        1455.22         1399.15
2000-01-05  -0.02550524   0.009848303        1399.42         1401.87
2000-01-06  -0.01418039   0.006958070        1402.11         1403.60
2000-01-07  -0.02806616   0.026126203        1403.45         1440.45
2000-01-10  -0.01575486   0.015754861        1441.47         1456.74
                 DATE   SPX2.rvol
2000-01-03 2000-01-03 0.012539537
2000-01-04 2000-01-04 0.017266934
2000-01-05 2000-01-05 0.017527864
2000-01-06 2000-01-06 0.011672103
2000-01-07 2000-01-07 0.009628084
2000-01-10 2000-01-10 0.010852972


SPXdata$SPX2.rv 是估计的实际方差。 SPXdata$SPX2.r 是每日收益(平仓)。 SPXdata$SPX2.rvol 是估计的实际波动率

SPXdata$SPX2.rvol

基准模型:SPX每日收益率建模

ARMA-EGARCH

考虑到在条件方差中具有异方差性的每日收益,GARCH模型可以作为拟合和预测的基准。

首先,收益序列是平稳的。

Augmented Dickey-Fuller Test
data:  SPXdata$SPX2.r
Dickey-Fuller = -15.869, Lag order = 16, p-value = 0.01
alternative hypothesis: stationary


分布显示出尖峰和厚尾。可以通过t分布回归分布密度图来近似  。黑线是内核平滑的密度,绿线是t分布密度。






acf(SPXdata$SPX2.r) ##自相关系数图


Box-Ljung test
data:  SPXdata$SPX2.r
X-squared = 26.096, df = 1, p-value = 3.249e-07


自相关图显示了每周相关性。Ljung-Box测试确认了序列存在相关性。

Series: SPXdata$SPX2.r 
ARIMA(2,0,0) with zero mean
Coefficients:
          ar1      ar2
      -0.0839  -0.0633
s.e.   0.0154   0.0154
sigma^2 estimated as 0.0001412:  log likelihood=12624.97
AIC=-25243.94   AICc=-25243.93   BIC=-25224.92


auro.arima 表示ARIMA(2,0,0)可以对收益序列中的自相关进行建模,而eGARCH(1,1)在波动率建模中很受欢迎。因此,我选择具有t分布的ARMA(2,0)-eGARCH(1,1)作为基准模型。

*---------------------------------*
*       GARCH Model Spec          *
*---------------------------------*
Conditional Variance Dynamics
------------------------------------
GARCH Model     : eGARCH(1,1)
Variance Targeting  : FALSE 
Conditional Mean Dynamics
------------------------------------
Mean Model      : ARFIMA(2,0,0)
Include Mean        : TRUE 
GARCH-in-Mean       : FALSE 
Conditional Distribution
------------------------------------
Distribution    :  std 
Includes Skew   :  FALSE 
Includes Shape  :  TRUE 
Includes Lambda :  FALSE


我用4189个观测值进行了回测(从2000-01-03到2016-10-06),使用前1000个观测值训练模型,然后每次向前滚动预测一个,然后每5个观测值重新估计模型一次 。下图显示 了样本外  预测和相应的实际波动率。

预测显示与实现波动率高度相关,超过72%。

cor(egarch_model$roll.pred$realized_vol, egarch_model$roll.pred$egarch.predicted_vol, 
    method = "spearman")


[1] 0.7228007


误差摘要和绘图

Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
-0.0223800 -0.0027880 -0.0013160 -0.0009501  0.0003131  0.0477600


平均误差平方(MSE):

[1] 1.351901e-05


改进:实际GARCH模型和LRD建模

实际GARCH

realGARCH 该模型由  Hansen,Huang和Shek(2012)  (HHS2012)提出,该模型 使用非对称动力学表示将实际(已实现)波动率测度与潜在  \_真实波动率联系\_起来。与标准GARCH模型不同,它是收益和实际波动率度量的联合建模(本文中的HEAVY估计器)。

模型:

*---------------------------------*
*       GARCH Model Spec          *
*---------------------------------*
Conditional Variance Dynamics
------------------------------------
GARCH Model     : realGARCH(2,1)
Variance Targeting  : FALSE 
Conditional Mean Dynamics
------------------------------------
Mean Model      : ARFIMA(2,0,0)
Include Mean        : TRUE 
GARCH-in-Mean       : FALSE 
Conditional Distribution
------------------------------------
Distribution    :  norm 
Includes Skew   :  FALSE 
Includes Shape  :  FALSE 
Includes Lambda :  FALSE


滚动预测过程与上述ARMA-EGARCH模型相同。下图显示  了样本外  预测和相应的实际波动率。

预测与实际的相关性超过77%

cor(arfima_egarch_model$roll.pred$realized_vol, arfima_egarch_model$roll.pred$arfima_egarch.predicted_vol, 
    method = "spearman")


[1] 0.7707991


误差摘要和图:

Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
-1.851e-02 -1.665e-03 -4.912e-04 -1.828e-05  9.482e-04  5.462e-02


均方误差(MSE):

[1] 1.18308e-05


备注:

  • 用于每日收益序列的ARMA-eGARCH模型和用于实际波动率的ARFIMA-eGARCH模型利用不同的信息源。ARMA-eGARCH模型仅涉及每日收益,而ARFIMA-eGARCH模型基于HEAVY估算器,该估算器是根据日内数据计算得出的。RealGARCH模型将它们结合在一起。
  • 以均方误差衡量,ARFIMA-eGARCH模型的性能略优于realGARCH模型。这可能是由于ARFIMA-eGARCH模型的LRD特性所致。

集成模型

随机森林

现在已经建立了三个预测

  • ARMA egarch_model
  • realGARCH rgarch model
  • ARFIMA-eGARCH arfima_egarch_model

尽管这三个预测显示出很高的相关性,但预计模型平均值会减少预测方差,从而提高准确性。使用了随机森林集成。

varImpPlot(rf$model)


随机森林由500棵树组成,每棵树随机选择2个预测以拟合实际值。下图是拟合和实际波动率。

预测与实际波动率的相关性:

[1] 0.840792


误差图:

均方误差:

[1] 1.197388e-05


MSE与实际波动率方差的比率

[1] 0.2983654


备注

涉及已实际量度信息的realGARCH模型和ARFIMA-eGARCH模型优于标准的收益序列ARMA-eGARCH模型。与基准相比,随机森林集成的MSE减少了17%以上。

从信息源的角度来看,realGARCH模型和ARFIMA-eGARCH模型捕获了日内高频数据中的增量信息(通过模型,HEAVY实际波动率估算)

进一步研究:隐含波动率

以上方法不包含隐含波动率数据。隐含波动率是根据SPX期权计算得出的。自然的看法是将隐含波动率作为预测已实现波动率的预测因子。但是,大量研究表明,无模型的隐含波动率VIX是有偏估计量,不如基于过去实际波动率的预测有效。Torben G. Andersen,Per Frederiksen和Arne D. Staal(2007)  同意这种观点。他们的工作表明,将隐含波动率引入时间序列分析框架不会带来任何明显的好处。但是,作者指出了隐含波动率中增量信息的可能性,并提出了组合模型。

因此,进一步的发展可能是将时间序列预测和隐含波动率(如果存在)的预测信息相结合的集成模型。

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
12天前
|
IDE Linux API
轻松在本地部署 DeepSeek 蒸馏模型并无缝集成到你的 IDE
本文将详细介绍如何在本地部署 DeepSeek 蒸馏模型,内容主要包括 Ollama 的介绍与安装、如何通过 Ollama 部署 DeepSeek、在 ChatBox 中使用 DeepSeek 以及在 VS Code 中集成 DeepSeek 等。
1062 14
轻松在本地部署 DeepSeek 蒸馏模型并无缝集成到你的 IDE
|
4天前
|
机器学习/深度学习 算法
扩散模型=进化算法!生物学大佬用数学揭示本质
在机器学习与生物学交叉领域,Tufts和Harvard大学研究人员揭示了扩散模型与进化算法的深刻联系。研究表明,扩散模型本质上是一种进化算法,通过逐步去噪生成数据点,类似于进化中的变异和选择机制。这一发现不仅在理论上具有重要意义,还提出了扩散进化方法,能够高效识别多解、处理高维复杂参数空间,并显著减少计算步骤,为图像生成、视频合成及神经网络优化等应用带来广泛潜力。论文地址:https://arxiv.org/pdf/2410.02543。
31 21
|
10天前
|
人工智能 算法 搜索推荐
单纯接入第三方模型就无需算法备案了么?
随着人工智能的发展,企业接入第三方模型提升业务能力的现象日益普遍,但算法备案问题引发诸多讨论。根据相关法规,无论使用自研或第三方模型,只要涉及向中国境内公众提供算法推荐服务,企业均需履行备案义务。这不仅因为服务性质未变,风险依然存在,也符合监管要求。备案内容涵盖模型基本信息、算法优化目标等,且需动态管理。未备案可能面临法律和运营风险。建议企业提前规划、合规管理和积极沟通,确保合法合规运营。
|
1月前
|
人工智能 数据可视化 开发者
FlowiseAI:34K Star!集成多种模型和100+组件的 LLM 应用低代码开发平台,拖拽组件轻松构建程序
FlowiseAI 是一款开源的低代码工具,通过拖拽可视化组件,用户可以快速构建自定义的 LLM 应用程序,支持多模型集成和记忆功能。
112 14
FlowiseAI:34K Star!集成多种模型和100+组件的 LLM 应用低代码开发平台,拖拽组件轻松构建程序
|
23天前
|
人工智能 JSON 数据可视化
集成500+多模态现实任务!全新MEGA-Bench评测套件:CoT对开源模型反而有害?
多模态模型在处理图像、文本、音频等数据方面能力不断提升,但其性能评估一直是个挑战。为此,研究团队推出了MEGA-Bench评测套件,集成505个现实任务,涵盖广泛领域和数据类型,由16位专家标注。它采用灵活输出格式,提供多维度评估指标,并配有交互式可视化工具,为模型优化提供了重要支持。然而,评估过程复杂且耗时,COT方法对开源模型性能的影响也值得探讨。论文链接:https://arxiv.org/abs/2410.10563
56 29
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
266 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
2月前
|
算法
基于模糊PI控制算法的龙格库塔CSTR模型控制系统simulink建模与仿真
本项目基于MATLAB2022a,采用模糊PI控制算法结合龙格-库塔方法,对CSTR模型进行Simulink建模与仿真。通过模糊控制处理误差及变化率,实现精确控制。核心在于将模糊逻辑与经典数值方法融合,提升系统性能。
|
2月前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
2天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。

热门文章

最新文章