支持向量回归SVR拟合、预测回归数据和可视化准确性检查实例

简介: 支持向量回归SVR拟合、预测回归数据和可视化准确性检查实例

支持向量回归(SVR)是一种回归算法,它应用支持向量机(SVM)的类似技术进行回归分析。正如我们所知,回归数据包含连续的实数。为了拟合这种类型的数据,SVR模型在考虑到模型的复杂性和错误率的情况下,用一个叫做ε管(epsilon-tube,ε表示管子的宽度)的给定余量来接近最佳值。

在本教程中,我们将通过在 Python 中使用 SVR ,简要了解如何使用 SVR 方法拟合和预测回归数据。教程涵盖:

  • 准备数据
  • 模型拟合和预测
  • 准确性检查
  • 源代码


我们将从在 Python 中加载所需的库开始。

import numpy as np

准备数据

我们将使用回归数据作为目标数据进行拟合。我们可以编写简单的函数来生成数据。

y = make(x)
x = np.array
plt.scatter
plt.show()

模型拟合和预测

我们来定义模型。该模型可以与默认参数一起使用。我们将在 x 和 y 数据上拟合模型。

svr

print(svr)

在这里,可以根据回归数据特征更改核、C 和 epsilon 参数。核识别算法中的核类型。可以使用“rbf”(默认核)、“linear”、“poly”和“sigmoid”。


01

02

03

04




接下来,我们将使用 svr 模型预测 x 数据。

predict(x)

为了检查预测结果,我们将在图中可视化 y 和 yfit 数据。

plt.scatter
plt.plot
plt.legend
plt.show

准确性检查

最后,我们将使用 R 平方和 MSE 指标检查模型和预测准确性。

score
print("R-squared:", score)
print("MSE:", measquaederor)

在本教程中,我们简要了解了如何使用 Python 中的 SVR 方法拟合回归数据。


相关文章
|
机器学习/深度学习 算法 计算机视觉
深度学习目标检测系列:一文弄懂YOLO算法|附Python源码
本文是目标检测系列文章——YOLO算法,介绍其基本原理及实现细节,并用python实现,方便读者上手体验目标检测的乐趣。
52056 0
|
机器学习/深度学习 数据采集 算法
Python实现支持向量机SVM回归模型(SVR算法)项目实战
Python实现支持向量机SVM回归模型(SVR算法)项目实战
|
NoSQL Go 数据库
2023最新版 Navicat 16.2+系列安装和试用教程详解:轻松掌握最新版本的数据库管理工具连接Redis
2023最新版 Navicat 16.2+系列安装和试用教程详解:轻松掌握最新版本的数据库管理工具连接Redis
560 0
|
11月前
|
机器学习/深度学习 编解码 监控
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
这篇文章详细介绍了如何使用YOLOv8进行目标检测任务,包括环境搭建、数据准备、模型训练、验证测试以及模型转换等完整流程。
17607 59
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
XML 机器学习/深度学习 数据格式
YOLOv8训练自己的数据集+常用传参说明
YOLOv8训练自己的数据集+常用传参说明
19099 1
|
存储 机器学习/深度学习 人工智能
深入浅出 AI 智能体(AI Agent)|技术干货
随着人工智能技术的发展,智能体(AI Agents)逐渐成为人与大模型交互的主要方式。智能体能执行任务、解决问题,并提供个性化服务。其关键组成部分包括规划、记忆和工具使用,使交互更加高效、自然。智能体的应用涵盖专业领域问答、资讯整理、角色扮演等场景,极大地提升了用户体验与工作效率。借助智能体开发平台,用户可以轻松打造定制化AI应用,推动AI技术在各领域的广泛应用与深度融合。
22677 1
|
机器学习/深度学习 数据采集 算法
Python实现PSO粒子群优化支持向量机回归模型(svr算法)项目实战
Python实现PSO粒子群优化支持向量机回归模型(svr算法)项目实战
|
机器学习/深度学习 算法 Python
机器学习基础:用 Lasso 做特征选择
机器学习基础:用 Lasso 做特征选择
机器学习基础:用 Lasso 做特征选择
|
机器学习/深度学习 传感器 数据采集
【BP回归预测】基于BP神经网络的回归预测附matlab完整代码
【BP回归预测】基于BP神经网络的回归预测附matlab完整代码
|
机器学习/深度学习 人工智能 自然语言处理
【机器学习】机器学习:人工智能中实现自动化决策与精细优化的核心驱动力
【机器学习】机器学习:人工智能中实现自动化决策与精细优化的核心驱动力