金融时间序列模型ARIMA 和GARCH 在股票市场预测应用

简介: 金融时间序列模型ARIMA 和GARCH 在股票市场预测应用

这篇文章讨论了自回归综合移动平均模型 (ARIMA) 和自回归条件异方差模型 (GARCH) 及其在股票市场预测中的应用。

介绍

一个 ARMA (AutoRegressive-Moving Average)") 有两部分,AR(p)部分和MA(q)部分,表示如下

其中 L 是滞后算子,ϵi 是白噪声。它可以通过 Box-Jenkins method. 我们可能会使用 PACF 绘制识别 AR 滞后阶数 p,和 ACF 图以识别 MA 滞后阶数 q;或使用信息,例如 AIC 和 BIC 做模型选择。

ARIMA (AutoRegressive Integrated Moving Average)") 是 ARMA 的拓展,通过为非平稳过程添加阶数为 d 的积分部分。

ARIMA是针对价格水平或收益率的,而GARCH(广义自回归条件异方差)则试图对波动率或收益率平方的聚类进行建模。它将ARMA项扩展到方差方面。

作为随机波动率模型的离散版本,GARCH也能捕捉到股票市场的厚尾效应。因此,将ARIMA和GARCH结合起来,预计在模拟股票价格时比单独一个模型更适合。在这篇文章中,我们将把它们应用于标普500指数的价格。

ARIMA

首先,众所周知,股票价格不是平稳的;而收益可能是平稳的。ADF单位根检验结果。

# 价格是已知的非平稳的;收益是平稳的
import adfuller
rsut = aduler(close)
prnt(f'ADF Satitic: {reslt\[\]}, pale: {rslt1\]}')  # null 假设:单位根存在;不能拒绝 null。
relt = adfler(histet)
prnt(f'ADF Statistic: {reut\[0\]}, pvaue: {rslt\[1\]}')   # 拒绝单位根的空假设 ==> 平稳

收益序列的 ADF p 值为 0,拒绝单位根的原假设。因此,我们在 ARIMA(p, d, q) 中接受 d=1,下一步是识别滞后 p 和 q。ACF 和 PACF 图表明滞后最多 35 个工作日。如果我们按照图表进行拟合,将有太多参数无法拟合。一种解决方案是使用每周或每月图表。在这里,我们将最大滞后时间限制为 5 天,并使用 AIC 选择最佳模型。

for p in rage(6):
    for q in rage(6):
        ry:
            mft = fit(disp=0)
            ic\[(p, q)\] = fiaic
        except:
            pass

下一步是拟合模型并通过残差统计评估模型拟合。残差仍然显示出一些自相关,并且没有通过正态性检验。由于滞后阶数限制,这在某种程度上是预料之中的。

尽管如此,让我们继续最后一步并使用模型进行预测。下面比较了对测试集的收益率预测和实际收益率。

收益率预测以 0% 为中心,置信区间在 ±2% 之间。结果并不是特别令人印象深刻。毕竟,市场正在经历一个动荡的阶段,在预测时间窗口内甚至下跌了 6%。

GARCH

让我们看看加入GARCH效果是否会产生更好的结果。建模过程类似于ARIMA:首先识别滞后阶数;然后拟合模型并评估残差,最后如果模型令人满意,就用它来预测。

我们将 AR 滞后和 GARCH 滞后都限制为小于 5。结果最优阶为 (4,2,2)。

for l in rage(5):
    for p in rage(1, 5):
        for q in rage(1, 5):
            try:
                mdl = arch(is_et, man='ARX',  vol='Garch', p=p, o=0, q=q, dist='Nomal')
                fit(last_obs=spldat)
                dc_ic\[(l, p, q)\] =aic
            except:
                pass

接下来让我们根据选择的最佳参数来拟合模型,如下所示。证实了均值模型是AR(4),方差模型是GARCH(2, 2)。一些系数在统计上不显着。

最后但并非最不重要的是,预测区间从±4%下降到±3%,然后又反弹到±5%,这清楚地表明了模型的波动性集群。请注意,这里是单步滚动预测,应该比静态的多期预测要好。

趋势平稳和差分平稳

趋势平稳,即确定性趋势,具有确定性均值趋势。相反,差分平稳具有随机趋势。前者可以用OLS估计,后者需要先求差分。

考虑一个简单的过程

如果 φ<1,则过程是趋势平稳的;也就是说,如果我们减去趋势 at,则过程变得平稳。若φ=1,则差分平稳。将第二个方程代入第一个方程很容易看出随机性,并将方程改写为


相关文章
|
6月前
|
数据挖掘 vr&ar Python
Python金融时间序列模型ARIMA 和GARCH 在股票市场预测应用
Python金融时间序列模型ARIMA 和GARCH 在股票市场预测应用
139 10
|
6月前
|
算法
R语言MCMC-GARCH、风险价值VaR模型股价波动分析上证指数时间序列
R语言MCMC-GARCH、风险价值VaR模型股价波动分析上证指数时间序列
R语言MCMC-GARCH、风险价值VaR模型股价波动分析上证指数时间序列
|
6月前
|
资源调度 BI vr&ar
R语言ARIMA-GARCH波动率模型预测股票市场苹果公司日收益率时间序列
R语言ARIMA-GARCH波动率模型预测股票市场苹果公司日收益率时间序列
|
6月前
|
数据可视化 Perl
R语言: GARCH模型股票交易量的研究道琼斯股票市场指数
R语言: GARCH模型股票交易量的研究道琼斯股票市场指数
|
6月前
|
vr&ar
时间序列和ARIMA模型预测拖拉机销售的制造案例研究
时间序列和ARIMA模型预测拖拉机销售的制造案例研究
时间序列和ARIMA模型预测拖拉机销售的制造案例研究
|
6月前
|
机器学习/深度学习 数据建模
数据分享|Eviews用ARIMA、指数曲线趋势模型对中国进出口总额时间序列预测分析
数据分享|Eviews用ARIMA、指数曲线趋势模型对中国进出口总额时间序列预测分析
|
6月前
|
机器学习/深度学习 算法
R语言用随机森林模型的酒店收入和产量预测误差分析
R语言用随机森林模型的酒店收入和产量预测误差分析
|
6月前
|
机器学习/深度学习 算法 大数据
结合新冠疫情COVID-19股票价格预测:ARIMA,KNN和神经网络时间序列分析
结合新冠疫情COVID-19股票价格预测:ARIMA,KNN和神经网络时间序列分析
|
6月前
|
大数据 vr&ar Windows
R语言使用ARIMAX预测失业率经济时间序列数据
R语言使用ARIMAX预测失业率经济时间序列数据
|
6月前
|
存储 jenkins 持续交付
R语言使用ARIMA模型预测股票收益
R语言使用ARIMA模型预测股票收益